Skip to main content
Log in

A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, a networked swellable dextrin nanogel (DNG) was developed to achieve stimulated responsive small interfering RNA (siRNA) release for melanoma tumor therapy. siRNA was loaded into multidimensional dextrin nanogels by charge condensation with positive arginine residues modified in the dextrin backbone. Moreover, the networked nanogel was destroyed and loosened based on its bioreducible responsive property to control accelerated siRNA release in a bioreducible intracellular environment, while it remained stable under normal physiological conditions. We demonstrated that DNGs had swellable and disassembly properties under reduced buffer condition by transmission electron microscopy evaluation. The DNGs achieved an endosomal escape followed by selective release of the cargo into the cytosol by glutathione-triggered disassembly according to confocal microscopy observation. Thus, this smart nanogel achieved outstanding luciferase gene silencing efficiency and decreased Bcl2 protein expression in vitro and in vivo based on western blot analysis. Moreover, this nanogel exhibited superior anti-tumor activity for B16F10 xenograft tumors in C57BL/6 mice. These results demonstrate that the networked DNGs are effective for gene condensation and controlled intracellular release for tumor therapy. Overall, these findings suggest that this multidimensional swellable stimuli-responsive dextrin nanogel is an innovative strategy with great promise for gene and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

    Article  Google Scholar 

  2. Oh, Y. K.; Park, T. G. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 2009, 61, 850–862.

    Article  Google Scholar 

  3. Dominska, M.; Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 2010, 123, 1183–1189.

    Article  Google Scholar 

  4. Wang, J.; Lu, Z.; Wientjes, M. G.; Au, J. L. S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J. 2010, 12, 492–503.

    Article  Google Scholar 

  5. Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659.

    Article  Google Scholar 

  6. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

    Article  Google Scholar 

  7. Li, H. P.; Yuan, D. F.; Sun, M. J.; Ping, Q. N. Effect of ligand density and PEG modification on octreotide-targeted liposome via somatostatin receptor in vitro and in vivo. Drug Deliv. 2016, 23, 3562–3572.

    Article  Google Scholar 

  8. Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896.

    Article  Google Scholar 

  9. Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011, 151, 220–228.

    Article  Google Scholar 

  10. Zhang, X. J.; Achazi, K.; Haag, R. Boronate cross-linked ATP- and pH-responsive nanogels for intracellular delivery of anticancer drugs. Adv. Healthc. Mater. 2015, 4, 585–592.

    Article  Google Scholar 

  11. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

    Article  Google Scholar 

  12. Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.

    Article  Google Scholar 

  13. Wu, J.; Zhao, L. L.; Xu, X. D.; Bertrand, N.; Choi, W. I.; Yameen, B.; Shi, J. J.; Shah, V.; Mulvale, M.; MacLean, J. L. et al. Hydrophobic cysteine poly(disulfide)-based redoxhypersensitive nanoparticle platform for cancer theranostics. Angew. Chem., Int. Ed. 2015, 54, 9218–9223.

    Article  Google Scholar 

  14. Godbey, W. T.; Wu, K. K.; Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release 1999, 60, 149–160.

    Article  Google Scholar 

  15. Cheng, R.; Feng, F.; Meng, F. H.; Deng, C.; Feijen, J.; Zhong, Z. Y. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011, 152, 2–12.

    Article  Google Scholar 

  16. Franco, R.; Cidlowski, J. A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ. 2009, 16, 1303–1314.

    Article  Google Scholar 

  17. Mitchell, J. B.; Russo, A. The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 1987, 8, 96–104.

    Google Scholar 

  18. Russo, A.; De Graff, W.; Friedman, N.; Mitchell, J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res. 1986, 46, 2845–2848.

    Google Scholar 

  19. Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem. Rec. 2010, 10, 366–376.

    Google Scholar 

  20. Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.

    Article  Google Scholar 

  21. Sisson, A. L.; Steinhilber, D.; Rossow, T.; Welker, P.; Licha, K.; Haag, R. Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem., Int. Ed. 2009, 48, 7540–7545.

    Article  Google Scholar 

  22. Seiffert, S. Small but smart: Sensitive microgel capsules. Angew. Chem., Int. Ed. 2013, 52, 11462–11468.

    Article  Google Scholar 

  23. Oh, J. K.; Lee, D. I.; Park, J. M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282.

    Article  Google Scholar 

  24. Sahiner, N.; Godbey, W. T.; Mcpherson, G. L.; John, V. T. Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: Synthesis and characterization. Colloid Polym. Sci. 2006, 284, 1121–1129.

    Article  Google Scholar 

  25. Kabanov, A. V.; Vinogradov, S. V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem., Int. Ed. 2009, 48, 5418–5429.

    Article  Google Scholar 

  26. Raemdonck, K.; Demeester, J.; De Smedt, S. Advanced nanogel engineering for drug delivery. Soft Matter 2009, 5, 707–715.

    Article  Google Scholar 

  27. He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Both core- and shell-cross-linked nanogels: Photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 2011, 27, 436–444.

    Article  Google Scholar 

  28. Klinger, D.; Landfester, K. Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: pH-dependent swelling and light-induced degradation. Macromolecules 2011, 44, 9758–9772.

    Article  Google Scholar 

  29. Wang, Y. C.; Wu, J.; Li, Y.; Du, J. Z.; Yuan, Y. Y.; Wang, J. Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chem. Commun. 2010, 46, 3520–3522.

    Article  Google Scholar 

  30. Zhuang, J. M.; Jiwpanich, S.; Deepak, V. D.; Thayumanavan, S. Facile preparation of nanogels using activated ester containing polymers. ACS Macro Lett. 2012, 1, 175–179.

    Article  Google Scholar 

  31. Li, Y. L.; Zhu, L.; Liu, Z. Z.; Cheng, R.; Meng, F. H.; Cui, J. H.; Ji, S. J.; Zhong, Z. Y. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew. Chem., Int. Ed. 2009, 48, 9914–9918.

    Article  Google Scholar 

  32. Zhang, X. J.; Achazi, K.; Steinhilber, D.; Kratz, F.; Dernedde, J.; Haag, R. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. J. Control. Release 2014, 174, 209–216.

    Article  Google Scholar 

  33. Gonçalves, C.; Torrado, E.; Martins, T.; Pereira, P.; Pedrosa, J.; Gama, M. Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids Surf. B: Biointerfaces 2010, 75, 483–489.

    Article  Google Scholar 

  34. Carvalho, V.; Castanheira, P.; Faria, T. Q.; Gonçalves, C.; Madureira, P.; Faro, C.; Domingues, L.; Brito, R. M. M.; Vilanova, M.; Gama, M. Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system. Int. J. Pharm. 2010, 400, 234–242.

    Article  Google Scholar 

  35. Das, D.; Das, R.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin cross linked with poly(HEMA): A novel hydrogel for colon specific delivery of ornidazole. RSC Adv. 2013, 3, 25340–25350.

    Article  Google Scholar 

  36. Das, D.; Patra, P.; Ghosh, P.; Rameshbabu, A. P.; Dhara, S.; Pal, S. Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym. Chem. 2016, 7, 2965–2975.

    Article  Google Scholar 

  37. Molinos, M.; Carvalho, V.; Silva, D. M.; Gama, F. M. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules 2012, 13, 517–527.

    Article  Google Scholar 

  38. Manchun, S.; Cheewatanakornkool, K.; Dass, C. R.; Sriamornsak, P. Novel pH-responsive dextrin nanogels for doxorubicin delivery to cancer cells with reduced cytotoxicity to cardiomyocytes and stem cells. Carbohydr. Polym. 2014, 114, 78–86.

    Article  Google Scholar 

  39. Sedlak, J.; Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205.

    Article  Google Scholar 

  40. Gilboe, D. D.; Willams, J. N., Jr. Evaluation of the Sakaguchi reaction for quanitative determination of arginine. Exp. Biol. Med. 1956, 91, 535–536.

    Article  Google Scholar 

  41. Lee, S. J.; Huh, M. S.; Lee, S. Y.; Min, S.; Lee, S.; Koo, H.; Chu, J. U.; Lee, K. E.; Jeon, H.; Choi, Y. et al. Tumorhoming poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew. Chem., Int. Ed. 2012, 51, 7203–7207.

    Article  Google Scholar 

  42. Xie, Y.; Qiao, H. Z.; Su, Z. G.; Chen, M. L.; Ping, Q. N.; Sun, M. J. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014, 35, 7978–7991.

    Article  Google Scholar 

  43. Wong, C.; Stylianopoulos, T.; Cui, J. A.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.

    Article  Google Scholar 

  44. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  Google Scholar 

  45. Adams, J. M.; Cory, S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998, 281, 1322–1326.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science and Technology Major Project (No. 2017YFA0205400), the National Natural Science Foundation of China (Nos. 81373983 and 81573377), the Jiangsu Fund for Distinguished Youth (No. BK20170028) and the Natural Science Foundation of Jiangsu Province (No. BK20141352). The authors also acknowledged Dr. Maoshen Jie (Roquette Ltd., Shanghai, China) for his kind help in providing dextrin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhou, Z., Zhang, F. et al. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res. 11, 4627–4642 (2018). https://doi.org/10.1007/s12274-018-2044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2044-6

Keywords

Navigation