Skip to main content
Log in

Activated charcoal: as burn rate modifier and its mechanism of action in non-metalized composite solid propellants

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Modification of composite solid propellant burning rates becomes a requirement based on the necessities of a mission. Literature discusses about various burn rate modifiers which can modify the burning rates effectively. This paper attempts to understand the behavior and mechanism of (dry) activated charcoal (a recently reported burn rate modifier) in composite solid propellant combustion. Extensive experimental studies are performed to achieve this objective. Effects of activated charcoal are studied on the individual components (fuel and oxidizer) of a composite solid propellant. Its behavior when present at various locations in a sandwich propellant and the quenched surface structures these sandwich propellants is also studied. These studies are further extended to composite propellants as well. From these studies, it is concluded that activated charcoal acts on the primary diffusion flame and enhances the binder melt flow over the surface. The unique features observed with activated charcoal (enhancement in burning the rates is observed only at low pressures and burn rate pressure index reduced) are justified with the proposed mechanism and site of its action. Understanding the mechanism of activated charcoal provided an opportunity to tailor a propellant composition, with activated charcoal coated on ammonium perchlorate, which exhibited very high burning rates (17.34 mm/s at 70 bar) and a near plateau burning (n ~0.08) in the pressure range of 20–70 bar. Also, this paper proposes a mechanism, as to what causes a propellant to have a relatively larger binder melt flow and consequently lower n has been answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

AC:

Activated charcoal

AP:

Ammonium perchlorate

CC:

Copper chromite

Cu2O:

Cuprous oxide

DOA:

Dioctyl adipate

DSC:

Differential scanning calorimetry

HTPB:

Hydoxyl terminated poly butadiene

IO:

Iron oxide

IPDI:

Isophorone di-isocynate

LiF:

Lithium fluoride

LPDL:

Low pressure deflagration limit

n :

Burn rate pressure index

PDF:

Primary diffusion flame

SEM:

Scanning electron microscope

TGA:

Thermal gravimetric analysis

References

  1. Kubota, N.: Propellants and Explosives. Wiley, Germany (2002)

    Google Scholar 

  2. Kohga, M.: Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propellants Explos. Pyrotech. 36(1), 57–64 (2011)

    Google Scholar 

  3. Bakhman, N.N., Kroylov, O.V., Kushmerev, M.Y., Lobanov, I.N., Margolis, L.Y., Sadovnikov, V.V., Sakharov, M.M.: Catalyzed burning rates of ammonium perchlorate and polymethylmethacrylate mixtures. J. Catal. 35, 383–390 (1974)

    Article  Google Scholar 

  4. Jacobs, P.W.M., Russel-Jones, A., The thermal decomposition and ignition of mixtures of ammonium perchlorate + copper chromite. In: Eleventh Symposium (International) on Combustion, vol. 11, pp. 457–462 (1967)

  5. Hussain, G., Rees, G.J.: Combustion of NH4NO3 and carbon based mixtures. Fuel 72(11), 1475–1479 (1993)

    Article  Google Scholar 

  6. Hussain, G., Rees, G.J.: Combustion of ammonium perchlorate based mixture with and without black powder, studied by d.s.c and TG/DTG. Fuel 71, 471–473 (1992)

    Article  Google Scholar 

  7. Verma, S., Ramakrishna, P.A.: Activated charcoal: a novel burn rate enhancer of aluminized composite propellants. Combust. Flame 157, 1202–1210 (2010)

    Article  Google Scholar 

  8. Beckstead, M.W., Derr, R.L., Price, C.F.: A model of composite solid-propellant combustion based on multiple flames. AIAA J. 8(12), 2200–2207 (1970)

    Article  Google Scholar 

  9. Verma, S., Ramakrishna, P.A.: Investigations on activated charcoal, a burn rate enhancer in composite solid propellant. J. Propuls. Power 29(5), 1214–1219 (2013)

    Article  Google Scholar 

  10. Nir, E.C.: An experimental study of the low pressure limit for steady deflagration of ammonium perchlorate. Combust. Flame 20(3), 419–435 (1973)

    Article  Google Scholar 

  11. Price, E.W., Sambumurthy, J.K., Sigman, R.K., Panyam, R.R.: Combustion of ammonium perchlorate-polymer sandwiches. Combust. Flame 63, 381–413 (1986)

    Article  Google Scholar 

  12. Verma, S., Ramakrishna, P.A.: Dependence of density and burn rate of composite solid propellant on mixer size. J. Propuls. Power (2013). doi:10.1016/j.actaastro.2013.07.016

    Google Scholar 

  13. Kumar, R., Ramakrishna, P.A., Issues related to the Measurement of Regression Rate of Fast Burning Hybrid Fuels. In: Eighth Asia–Pacific Conference on Combustion, Hyderabad, India, (2010)

  14. Williams, F.A., Barrere, M., Huang, N.C.: Fundamental Aspects of Solid Propellant Rockets. Technivision Services Slough, England (1964)

    Google Scholar 

  15. Taylor, J.R.: An Introduction to Error Analysis The study of Uncertainties in Physical Measurements, pp. 45–92. University Science Books, Sausalito (1997)

    Google Scholar 

  16. Hightower, J.D., Price, E.W.: Combustion of Ammonium Perchlorate. Proc. Combust. Inst. 11(1), 463–472 (1967)

    Article  Google Scholar 

  17. Brill, T.B., Brush, P.J., Patil, D.G.: Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH4ClO4. Combust. Flame 94(1–2), 70–76 (1993)

    Article  Google Scholar 

  18. Friedman, R., Nigent, R.G., Rumbel, K.G., Scurlock, A.C.: Deflagration of ammonium perchlorate. Proc. Combust. Inst. 6(1), 612–618 (1957)

    Article  Google Scholar 

  19. Karabeyoglu, M.A., Zilliac, G., Cantwell, B., DeZilwa, S.R.N., Castellucci, P.: Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. J. Propuls. Power 20(6), 1037–1045 (2004)

    Article  Google Scholar 

  20. Ramakrishna, P.A., Paul, P.J., Mukunda, H.S.: Sandwich propellant combustion: modeling and experimental comparison. Proc. Combust. Inst. 29, 2963–2973 (2002)

    Article  Google Scholar 

  21. Ramakrishna, P.A., Paul, P.J., Mukunda, H.S., Sohn, C.H.: Combustion of sandwich propellant at low pressure. Proc. Combust. Inst. 30, 2097–2104 (2005)

    Article  Google Scholar 

  22. Kubota, N., Hirata, N., Inhibition reaction of LiF on the combustion of ammonium perchlorate propellants. In: Twentieth Symposium (International) on Combustion, Combustion Institute, pp. 2051–2056 (1984)

  23. Krishnan, S., Jeenu, R.: Combustion characteristics of AP/HTPB with burn rate modifiers. J. Propuls. Power 8(4), 748–755 (1992)

    Article  Google Scholar 

  24. Mukunda, H.S.: Understanding Combustion. Universities Press Pvt. Ltd., Hyderabad, India (2009)

    Google Scholar 

  25. Ide, K.M., Composite Propellants with Bi-Plateau Burning Behaviour, AR-012-509, Commonwealth of Australia (2002)

  26. Banerjee, S., Chakravarthy, S.R.: Ammonium perchlorate-based composite solid propellant formulations with plateau burning rate trends. Combust. Explos. Shock Waves 43(4), 435–441 (2007)

    Article  Google Scholar 

  27. Jayaraman, K., Anand, K.V., Chakravarthy, S.R., Sarathi, R.: Effect of nano-aluminium in plateau burning and catalyzed composite solid propellant combustion. Combust. Flame 156, 1662–1673 (2009)

    Article  Google Scholar 

  28. Boggs, T.L., Derr, R.L., Beckstead, M.W.: Surface structure of ammonium perchlorate composite propellants. AIAA J. 8(2), 370–372 (1970)

    Article  Google Scholar 

  29. Ishitha, K., Ramakrishna, P.A.: Enhancing composite solid propellant burning rates using potassium doped ammonium perchlorate: part I. J. Propuls. Power 30(2), 277–284 (2014)

    Article  Google Scholar 

  30. Zanotti, C., Volpi, A., Bianchessi, M., De Luca, L.: Nonsteady Burning and Combustion Stability of Solid Propellants. In: De Luca, L., Price, E.W., Summerfield, M. (eds.) Progress in Astronautics and Aeronautics, vol. 143, pp. 145–196. ScienceWorks, Inc., Washington, DC (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishitha, K., Ramakrishna, P.A. Activated charcoal: as burn rate modifier and its mechanism of action in non-metalized composite solid propellants. Int J Adv Eng Sci Appl Math 6, 76–96 (2014). https://doi.org/10.1007/s12572-014-0112-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-014-0112-z

Keywords

Navigation