Skip to main content
Log in

Singularly Perturbed Vector Field Method (SPVF) Applied to Combustion of Monodisperse Fuel Spray

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems. The resulting subsystem enables us to understand better the complex system, and to simplify the calculations. Later powerful analytical, numerical and asymptotic methods [e.g method of integral (invariant) manifold, the homotopy analysis method etc.] can be applied to each subsystem. In this paper, we compare the results obtained by the methods of integral invariant manifold and SPVF as applied to the spray droplets combustion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (1 / s)

B :

Universal gas constant (\(J k mol^{-1} K^{-1}\))

C :

Molar concentration (\(k mol m^{-3}\))

c :

Specific heat capacity (\(Jkg^{-1}K^{-1}\))

E :

Activation energy (\(J k mol^{-1}\))

L :

Liquid evaporation energy (i.e., latent heat of evaporation, Enthalpy of evaporation) (\(Jkg^{-1}\))

m :

Different size of droplets’ radii

n :

Number of droplets per unit volume (\(m^{-3}\))

Q :

Combustion energy (\(J kg^{-1}\))

R :

Radius of droplet (m)

T :

Temperature (K)

t :

Time (s)

d :

Liquid fuel droplets

f :

Combustible gas component of the mixture

g :

Gas mixture

p :

Under constant pressure

0:

Initial state

References

  1. Gol’dshtein, V.M., Sobolev, V.A.: Singularity theory and some problems of functional analysis. Am. Math. Soc. 153(2), 73–92 (1992)

    MathSciNet  Google Scholar 

  2. Babushok, V.I., Gol’dshtein, V.M.: Structure of the thermal explosion limit. Combust. Flame 72(3), 221–226 (1988)

    Article  Google Scholar 

  3. McIntosh, A.C., Gol’dshtein, V.M., Goldfarb, I., Zinoviev, A.: Thermal explosion in a combustible gas containing fuel droplets. Combust. Theory Model. 2(2), 153–165 (1998)

    Article  MATH  Google Scholar 

  4. Goldfarb, I., Gol’dshtein, V.M., Kuzmenko, G., Greenberg, B.J.: Monodisperse spray effects on thermal explosion in a gas. In: HTD-352 Proc. ASME Heat Transfer Division, ASME Int. Congress and Exposition, Dallas, TX, vol. 2, pp. 199–206 (1997)

  5. Roussel, M.R., Fraser, S.J.: Geometry of the steady-state approximation: perturbation and accelerated convergence methods. J. Chem. Phys. 93, 47–63 (1990)

    Article  Google Scholar 

  6. Roussel, M.R., Fraser, S.J.: Accurate steady-state approximations: implications for kinetics experiments and mechanism. J. Chem. Phys. 95, 8762–8770 (1991)

    Article  Google Scholar 

  7. Roussel, M.R., Fraser, S.J.: Global analysis of enzyme inhibition kinetics. J. Chem. Phys. 97, 8316–8327 (1993)

    Article  Google Scholar 

  8. Roussel, M.R., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos 11, 196–206 (2001)

    Article  MATH  Google Scholar 

  9. Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 59–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zagaris, A., Kaper, H.G., Kaper, T.J.: Fast and slow dynamics for the computational singular perturbation method. Soc. Ind. Appl. Math. 2(4), 613–638 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Berglunda, N., Gentzd, B.: Geometric singular perturbation theory for stochastic differential equations. J. Diff. Equ. 191(1), 1–54 (2003)

    Article  MathSciNet  Google Scholar 

  12. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ. 31(1), 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jones, C.K.: Geometric singular perturbation theory. Dynamical Systems, 1609 of the series Lecture Notes in Mathematics, pp 44–118 (2006)

  14. Maas, U., Pope, S.B.: Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds (PDF). In: Symposium (International) on Combustion. Twenty-Fourth Symposium on Combustion vol. 24(1), pp. 103–112 (1992)

  15. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  16. Bongers, H., Van Oijen, J.A., De Goey, L.P.H.: Intrinsic low-dimensional manifold method extended with diffusion. Proc. Combust. Inst. 29(1), 1371–1378 (2002)

    Article  Google Scholar 

  17. Alison, S.T., Whitehouse, L., Richard, L.: The estimation of intrinsic low dimensional manifold dimension in atmospheric chemical reaction systems. In: Bruno, S. (ed.) Air Pollution Modelling and Simulation, pp. 245–263. Springer, Berlin Heidelberg (2002)

  18. Hans, G.K., Tasso, J.K.: Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165, 66–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bykov, V., Maas, U.: Reaction-diffusion manifolds and global quasi-linearization: two complementary methods for mechanism reduction. Open Thermodyn J 7, 92–100 (2013)

    Google Scholar 

  20. Bykov, V., Griffiths, J.F., Piazzesi, R., Sazhin, S.S., Sazhina, E.M.: The application of the global quasi-linearisation technique to the analysis of the cyclohexane/air mixture autoignition. Appl. Math. Comput. 219(14), 7338–7347 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Bykov, V., Gol’dshtein, V., Maas, U.: Simple global reduction technique based on decomposition approach. Combust. Theory Model. 12(2), 389–405 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bykov, V., Gol’dshtein, V.: On a decomposition of motions and model reduction. J. Phys. Conf. Ser. 138, 1–15 (2008)

    Article  Google Scholar 

  23. Bykov, V., Goldfarb, I., Gol’dshtein, V.: Singularly perturbed vector fields. J. Phys. Conf. Ser. 55, 28–44 (2006)

    Article  Google Scholar 

  24. Bykov, V., Maas, U.: Investigation of the Hierarchical Structure of Kinetic Models in Ignition Problems. Journal Physics of Chemistry 223, 461–479 (2009)

    Google Scholar 

  25. Bykov, V., Maas, U.: Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs). Proc. Combust. Inst. 32(1), 561–568 (2009)

    Article  Google Scholar 

  26. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11(6), 839–862 (2007)

    Article  MATH  Google Scholar 

  27. Bykov, V., Goldfarb, I., Gol’dshtein, V., Greenberg, J.B.: Auto-ignition of a polydisperse fuel spray. Proc. Combust. Inst. 31(2), 2257–2264 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to OPhir Nave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nave, O. Singularly Perturbed Vector Field Method (SPVF) Applied to Combustion of Monodisperse Fuel Spray. Differ Equ Dyn Syst 27, 57–74 (2019). https://doi.org/10.1007/s12591-017-0373-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0373-7

Keywords

Navigation