Skip to main content
Log in

Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The present study aimed to isolate an optimal lactic acid bacterial strain from the feces of healthy giant pandas. The strain exhibited good stability at low pH and high bile salt concentrations, activity against pathogens relevant to pandas, and antibiotic susceptibility. In the current study, 25 isolates were obtained from de Man, Rogosa, and Sharpe agar. Two (E21 and G83) and eight (E1, E2, E16, E18, E21, E69, E70, and G83) isolates demonstrated good performance at pH 2.0 and bile 2% (w/v), respectively. Three isolates (G83, G88, and G90) possessed better antimicrobial effect on enterotoxigenic Escherichia coli CVCC196 (ETEC) than the rest. One isolate (G83) strongly affected Salmonella, whereas three (G83, G87, and G88) exhibited inhibitory activity against Staphylococcus aureus. All isolates were multi-drug resistant. These isolates were identified as Lactobacillus (5 isolates) and Enterococcus (20 isolates) by 16S rRNA sequencing. Virulence genes were detected in Enterococcus isolates. Isolate G83 was identified as Lactobacillus plantarum and was considered as the best probiotic candidate among all of the experimental isolates. This study provided necessary and important theoretical guidance for further experiments on G83 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Geier MS, Mikkelsen LL, Torok VA, Allison GE, Olnood CG, Boulianne M, Hughes RJ, Choct M (2010) Comparison of alternatives to in-feed antimicrobials for the prevention of clinical necrotic enteritis. J Appl Microbiol 109(4):1329–1338. https://doi.org/10.1111/j.1365-2672.2010.04758.x

    Article  CAS  PubMed  Google Scholar 

  2. Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L, Lechat P, Smokvina T, Langella P, Lecuit M, Cossart P (2012) Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci 109(41):16684–16689. https://doi.org/10.1073/pnas.1212809109

    Article  PubMed  Google Scholar 

  3. Yu Q, Yuan L, Deng J, Qian Y (2015) Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol 5:26. https://doi.org/10.3389/fcimb.2015.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou Z, Zhou X, Zhong Z, Wang C, Zhang H, Li D, He T, Li C, Liu X, Yuan H (2014) Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions. World J Microbiol Biotechnol 30(12):3129–3136. https://doi.org/10.1007/s11274-014-1740-y

    Article  CAS  PubMed  Google Scholar 

  5. Wu C, Wu L, Zhang L, Gelbič I, Xu L, Guan X (2014) Characterization of eight Bacillus thuringiensis isolates originated from fecal samples of Fuzhou Zoo and Fuzhou Panda Center. J Asia Pac Entomol 17(3):395–397. https://doi.org/10.1016/j.aspen.2014.02.009

    Article  CAS  Google Scholar 

  6. Chen F, Shuang L, Cheng L, Shuang M, Li Z, Qi W (2012) Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda (in Chinese). Acta Microbiol Sin 52(9):1113–1121 (樊程, 李双江, 李成磊, 马双, 邹立扣, 吴琦 (2012) 大熊猫肠道纤维素分解菌的分离鉴定及产酶性质. 微生物学报 52 (9):1113-1121)

    Google Scholar 

  7. Peng Z, Dong Z, Qiang W, Niu L, Ni X, Zou F, Yang M, Hao S, Yi Z, Qian L (2016) Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca). World J Microbiol Biotechnol 32(5):79. https://doi.org/10.1007/s11274-016-2034-3

    Article  PubMed  Google Scholar 

  8. Chen X, Yin M, Wang X, Pu Z, Ma Y, Chen Z (2015). Isolation and preliminary identification of intestinal pathogens of captive giant panda (In Chinese). J Mianyang Normal Univ (2):1–7. (陈希文, 尹苗, 王雄清, 蒲中慧, 马缨, 陈紫娟 (2015) 圈养大熊猫肠道致病菌的分离与初步鉴定. 绵阳师范学院学报 (2):1–7). https://doi.org/10.3969/j.issn.1672-612x.2015.02.001

  9. Fei S, Jing L, Dan X, Wan W, Geng G, Ning F, Shui Y (2002) Pathogens of intestinal disease in giant panda (in Chinese). J Economic Animal 6(2):20–23 (孙飞龙, 刘敬贤, 席丹, 王万云, 高更更, 冯宁, 杨水云 (2002) 大熊猫肠道疾病致病菌. 经济动物学报 6 (2):20-23). https://doi.org/10.3969/j.issn.1007-7448.2002.02.006

    Article  Google Scholar 

  10. Fontana C, Cocconcelli PS, Vignolo G, Saavedra L (2015) Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 47:53–59. https://doi.org/10.1016/j.foodcont.2014.06.021

    Article  CAS  Google Scholar 

  11. Ghosh K, Ray M, Adak A, Halder SK, Das A, Jana A, Parua S, Vágvölgyi C, Mohapatra PKD, Pati BR (2015) Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour Technol 188:161–168. https://doi.org/10.1016/j.biortech.2015.01.130

    Article  CAS  PubMed  Google Scholar 

  12. Cockerill FR (2013) Performance standards for antimicrobial susceptibility testing : twenty-first informational supplement. Clinical and Laboratory Standards Institute

  13. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellomo G, Mangiagle A, Nicastro L, Frigerio G (1980) A controlled double-blind study of SF68 strain as a new biological preparation for the treatment of diarrhoea in pediatrics. Curr Ther Res Clin 28(6):927–936

    Google Scholar 

  15. Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67(1):193–200

    Article  CAS  Google Scholar 

  16. Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59(1):415–420

    Article  CAS  Google Scholar 

  17. Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176(23):7335–7344. https://doi.org/10.1128/jb.176.23.7335-7344.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Duprè I, Sechi LA (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88(2):291–304. https://doi.org/10.1016/S0168-1605(03)00191-0

    Article  CAS  PubMed  Google Scholar 

  19. Barbavidal E, Castillejos L, Lópezcolom P, Rivero UM, Moreno Muñoz JA, Martínorúe SM (2017) Evaluation of the probiotic strain Bifidobacterium longum subsp. Infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Front Microbiol 8:533. https://doi.org/10.3389/fmicb.2017.00533

    Article  Google Scholar 

  20. Nishida S, Ishii M, Nishiyama Y, Abe S, Ono Y, Sekimizu K (2017) Lactobacillus paraplantarum 11-1 isolated from rice bran pickles activated innate immunity and improved survival in a silkworm bacterial infection model. Front Microbiol 8:436. https://doi.org/10.3389/fmicb.2017.00436

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu Y, Wang Y, Zhou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W (2017) Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol 8:469. https://doi.org/10.3389/fmicb.2017.00469

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. https://doi.org/10.1038/nrgastro.2010.117

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yadav R, Puniya AK, Shukla P (2016) Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage Raabadi. Front Microbiol 7:1683. https://doi.org/10.3389/fmicb.2016.01683

    Article  PubMed  PubMed Central  Google Scholar 

  24. Havenaar R, Brink BT, Veld JHJHI (1992) Selection of strains for probiotic use. Springer Netherlands:209–224. https://doi.org/10.1007/978-94-011-2364-8_9

  25. Klopper KB, Deane SM, Lmt D (2017) Aciduric strains of Lactobacillus reuteri and Lactobacillus rhamnosus, isolated from human feces, have strong adhesion and aggregation properties. Probiotics Antimicro 2:1–9. https://doi.org/10.1007/s12602-017-9307-5

    Article  CAS  Google Scholar 

  26. Beasley SS, Manninen TJK, Saris PEJ (2006) Lactic acid bacteria isolated from canine faeces. J Appl Microbiol 101(1):131–138. https://doi.org/10.1111/j.1365-2672.2006.02884.x

    Article  CAS  PubMed  Google Scholar 

  27. Blazenka K, Jagoda Š, Jasna B, Krešimir G, Jadranka F, Carlo I, Francesco C (2008) Characterization of the three selected probiotic strains for the application in food industry. World J Microbiol Biotechnol 24(5):699–707

    Article  Google Scholar 

  28. Verso LL, Lessard M, Talbot G, Fernandez B, Fliss I (2017) Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiotics Antimicro 5:1–14. https://doi.org/10.1007/s12602-017-9309-3

    Article  CAS  Google Scholar 

  29. Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2016) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36(1):38–51. https://doi.org/10.1111/jfs.12211

    Article  CAS  Google Scholar 

  30. Egervärn M, Lindmark H, Olsson J, Roos S (2010) Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Anton Leeuw Int J G 97(2):189–200. https://doi.org/10.1007/s10482-009-9401-0

    Article  CAS  Google Scholar 

  31. Korhonen JM, Hoek AHAMV, Saarela M, Huys G, Tosi L, Mayrhofer S, Wright AV (2010) Antimicrobial susceptibility of Lactobacillus rhamnosus. Benefic Microbes 1(1):75–80. https://doi.org/10.3920/BM2009.0002

    Article  CAS  Google Scholar 

  32. Colombo M, Castilho NP, Todorov SD, Nero LA (2017) Beneficial and safety properties of a Corynebacterium vitaeruminis strain isolated from the cow rumen. Probiotics Antimicro 9(2):157–162. https://doi.org/10.1007/s12602-017-9263-0

    Article  CAS  Google Scholar 

  33. Barton MD (2000) Antibiotics or probiotics: reducing antibiotic resistance. J Magn Reson Imaging 13:352–355

    Google Scholar 

  34. Franz CMAP, Melanie H, Hikmate A, Wilhelm H, Antonio G (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151(2):125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  35. Kreuzer S, Machnowska P, Aßmus J, Sieber M, Pieper R, Schmidt MF, Brockmann GA, Scharek-Tedin L, Johne R (2012) Feeding of the probiotic bacterium Enterococcus faecium NCIMB 10415 differentially affects shedding of enteric viruses in pigs. Vet Res 43(1):95–96. https://doi.org/10.1186/1297-9716-43-58

    Article  CAS  Google Scholar 

  36. Hunt CP (1998) The emergence of enterococci as a cause of nosocomial infection. Brit J Biomed Sci 55(2):149–156

    CAS  Google Scholar 

  37. Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7(4):462–478. https://doi.org/10.1128/CMR.7.4.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee K, Lee M, Lee Y (2008) Safety assessment of commercial Enterococcus probiotics in Korea. J Microbiol Biotechnol 18(5):942–945

    CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by the National Natural Science Foundation of China (31672318) and the Funded Project of Chengdu Giant Panda Breeding Research Foundation (CPF2014-15, CPF2015-06).

Author information

Authors and Affiliations

Author notes

  1. Xueqin Ni, Qiang Wang and Zhirong Peng are joint first authors.

    Authors

    Corresponding author

    Correspondence to Dong Zeng.

    Ethics declarations

    Conflict of Interest

    The authors declare that they have no conflict of interest.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Liu, Q., Ni, X., Wang, Q. et al. Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro. Probiotics & Antimicro. Prot. 11, 85–91 (2019). https://doi.org/10.1007/s12602-017-9381-8

    Download citation

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s12602-017-9381-8

    Keywords

    Navigation