Skip to main content
Log in

First Principle Study of Doped Graphene for FET Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The electronic industry using silicon complementary metal-oxide-semiconductor (CMOS) technology is the leading contender in the market since five decades. Nowadays, silicon CMOS technology is reached to its fundamental limits (physical and geometrical), which is the major roadblock for upcoming technological nodes. As an alternative solution, two-dimensional (2D) materials are in great demand. Graphene is the first 2D material being studied and it is also known as “miracle-material” due to its incredible physical properties. This paper explores the current status of graphene transistor as a potential supplement to the silicon CMOS technology. The absence of an energy bandgap in graphene results in severe shortcomings for logic applications. Various techniques to engineer the bandgap in graphene field-effect transistors (FETs) have been discussed. The use of dopant atoms in graphene and its effect on drain current is studied. The current-voltage characteristics of prototype devices are determined by the first-principles quantum transport calculations. The graphene nanoribbon (GNR) FET and dual-gate (DG) FET structures have been designed and simulated using QuantumWise ATK. A bandgap opening technique in bilayer graphene is proposed and analysed for FET applications as a potential replacement for silicon transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nature Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Geim AK (2009) Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  3. Chenyun P, Naeemi A (2016) IEEE Electron Device Letters 37(4):508–511

    Article  Google Scholar 

  4. Nikonov DE, Young IA (2015) IEEE J Exploratory Solid-State Comput Devices Circuits 1(1):3–11

    Article  Google Scholar 

  5. Soumya J, Dutta AK (2015) IEEE Trans Electron Devices 62(12):4313–432

    Article  Google Scholar 

  6. Liao W, Zhao H, Ouyang G, Chen K-Q, Zhou G (2012) Appl Phys Lett 100:153112

    Article  Google Scholar 

  7. Liao WH, Zhou BH, Wang HY, Zhou GH (2010) Eur Phys J B 76:463–467

    Article  CAS  Google Scholar 

  8. Castro Neto H, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81(1):109

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669

    Article  CAS  Google Scholar 

  10. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312(5777):1191–1196

    Article  CAS  Google Scholar 

  11. Lin Y-M, Dimitrakopoulos C, Jenkins KA, FArmer DB, Chiu H-Y, Grill A, Avouris Ph (2010) Science 327(5966):662

    Article  CAS  Google Scholar 

  12. Gupta SK, Jaiswal GN (2015) Superlattice Microst 86:355– 362

    Article  Google Scholar 

  13. Rodriguez S, Vaziri S, Smith A, Frégonèse S, Ostling M, Lemme MC, Rusu A (2014) IEEE Trans Electron Devices 61(4):1199–1207

    Article  Google Scholar 

  14. Tamersit K, Djeffal F (2016) IEEE Sensors J. 16(11):4180–4191

    Article  Google Scholar 

  15. Chen FW, Ilatikhameneh H, Klimeck G, Rahman Tao Chu R, Chen Z (2015) SISPAD 2015

  16. Fahim-AI-Fattah Md, Tawabur Rahman Md, Sherajul Islam Md, Bhuiyan AG, Abdullah Khan A (2015) (ICEEICT 2015)

  17. Taylor J, Guo H, Wang J (2001) Phys Rev B 63(24):245407–1–245407-13

    Article  Google Scholar 

  18. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401–1–165401-17

    Article  Google Scholar 

  19. Liu F, Liu X, Kang J (2011) Appl Phys Lett 98:213502

    Article  Google Scholar 

  20. Kechedzhi K, Falko VI, McCann E, Altshuler BL (2007) Phys Rev Lett 98:176806

    Article  Google Scholar 

  21. McCann E (2006) Phys Rev b (74), 161403

  22. McCann E (2007) Phys Status Solidi B (244), 4112

  23. Li SL, Miyazaki H, Hiura H, Liu CA, Tsukagoshi K (2011) ACS Nano 5 (500)

  24. Minot ED, Yaish Y, Sazonova V, Park J-Y, Brink M, McEuen PL (2003) Phys Rev Lett 90:156401/1–156401/4

    Article  CAS  Google Scholar 

  25. Zhou SY, Gweon GH, Fedorov AV, First PN, De Heer WA, Lee DH, Guinea F, Neto AHC, Lanzara A (2007) Nat Mater 6(10):770–775

    Article  CAS  Google Scholar 

  26. Ribeiro RM, Peres NMR, Coutinho J, Briddon PR (2008) Phys Rev B 78:075442/1–075442/7

    Article  CAS  Google Scholar 

  27. Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803

    Article  Google Scholar 

  28. Eazwa M (2006) Phys Rev B 73:045432

    Article  Google Scholar 

  29. Sun L, Li QX, Ren H, Su HB, Shi QW, Yang JL (2008) J Chem Phys 129:074704

    Article  Google Scholar 

  30. Lee Y-H, Kim Y-J (2012) Appl Phys Lett 101:083102

    Article  Google Scholar 

  31. Fu X-W, Liao Z-M, Zhou J-X, Zhou Y-B, Wu H-C, Zhang R, Jing G, Xu J, Wu X, Guo W, Yu D (2011) Appl Phys Lett 99 :213107

    Article  Google Scholar 

  32. Son Y-W, Cohen ML, Louie SG (2006) Nature, in press

  33. Lee H et al (2005) Phys. Rev. B 72:174431

    Article  Google Scholar 

  34. Ezawa M (2006) Phys Rev B 73:045432

    Article  Google Scholar 

  35. Zhou G, Duan W (2005) Nanotechnology 5:1421–1434

    CAS  Google Scholar 

  36. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401–1–165401-17

    Article  Google Scholar 

  37. Peres NMR, Klironomos FD, Tsai S-W, Santos JR, Lopes dos Santos JMB, Castro Neto AH (2007) Europhys Lett 80:67007

    Article  Google Scholar 

  38. Kumar A, Kumar V, Agarwal S, Basak A, Jain N, Bulusu A, Manhas SK (2014) IEEE Trans Nanotechnol 13(1):16–22

    Article  CAS  Google Scholar 

  39. Echtermeyer TJ et al (2007) Eur Phys J -Spec Top 148:19–26

    Article  Google Scholar 

  40. Williams JR, DiCarlo L, Marcus CM (2007) Science 317(5838):638–641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadthiya Narendar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendar, V., Gupta, S.K. & Saxena, S. First Principle Study of Doped Graphene for FET Applications. Silicon 11, 277–286 (2019). https://doi.org/10.1007/s12633-018-9852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9852-x

Keywords

Navigation