Skip to main content
Log in

Performance of Lightweight Aggregates Comprised of Sediments and Thermoplastic Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The management of dredging sediments and plastic waste is of increasing environmental, societal, and economic importance. To address this, we produced lightweight aggregates composed of 70% sediment based mineral filler and 30% thermoplastic waste containing polypropylene, polyethylene, and polystyrene. When tested, the aggregates satisfied the requirements of the European Standard EN 13055-1 for lightweight aggregates and exhibited good mechanical properties and low water absorption compared to natural aggregates. Based on these results, the formulated lightweight aggregates were found to be suitable for use as a partial replacement for up to 30% of the natural sand in mortar formulations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Snellings, R., Cizer, Ö., Horckmans, L., Durdziński, P.T., Dierckx, P., Nielsen, P., Van Balen, K., Vandewalle, L.: Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. 129, 35–39 (2016). https://doi.org/10.1016/j.clay.2016.04.019

    Article  Google Scholar 

  2. Pascal, M.O., Denis, M.D., Marie, M.J.J., Edine, M.A.N., Claude, M.A., Bruno, M.D., Xavier, M.M.F., Gérard, M.B.: Soutenue le 13 mai 2004 devant la Commission d’examen, 299

  3. Dubois, V., Abriak, N.E., Zentar, R., Ballivy, G.: The use of marine sediments as a pavement base material. Waste Manag. 29, 774–782 (2009). https://doi.org/10.1016/j.wasman.2008.05.004

    Article  Google Scholar 

  4. Kasmi, A., Abriak, N.-E., Benzerzour, M., Azrar, H.: Environmental impact and mechanical behavior study of experimental road made with river sediments: recycling of river sediments in road construction. J. Mater. Cycles Waste Manag. 19, 1405–1414 (2017). https://doi.org/10.1007/s10163-016-0529-5

    Article  Google Scholar 

  5. Cappuyns, V., Deweirt, V., Rousseau, S.: Dredged sediments as a resource for brick production: possibilities and barriers from a consumers’ perspective. Waste Manag. 38, 372–380 (2015). https://doi.org/10.1016/j.wasman.2014.12.025

    Article  Google Scholar 

  6. Maherzi, W., Benzerzour, M., Mamindy-Pajany, Y., van Veen, E., Boutouil, M., Abriak, N.-E.: Beneficial reuse of Brest-Harbor (France)-dredged sediment as alternative material in road building laboratory investigations. Environ. Technol. 39(2018), 566–580 (2018). https://doi.org/10.1080/09593330.2017.1308440

    Article  Google Scholar 

  7. Brakni, S., Abriak, N.E., Hequette, A.: Formulation of artificial aggregates from dredged harbour sediments for coastline stabilization. Environ. Technol. 30, 849–854 (2009). https://doi.org/10.1080/09593330902990154

    Article  Google Scholar 

  8. Janfeshan Araghi, H., Nikbin, I.M., Rahimi Reskati, S., Rahmani, E., Allahyari, H.: An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Constr. Build. Mater. 77(2015), 461–471 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.037

    Article  Google Scholar 

  9. Dang, T.A., Kamali-Bernard, S., Prince, W.A.: Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 41, 602–611 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.088

    Article  Google Scholar 

  10. Wei, Y.-L., Yang, J.-C., Lin, Y.-Y., Chuang, S.-Y., Wang, H.P.: Recycling of harbor sediment as lightweight aggregate. Mar. Pollut. Bull. 57, 867–872 (2008). https://doi.org/10.1016/j.marpolbul.2008.03.033

    Article  Google Scholar 

  11. Kyrikou, I., Briassoulis, D.: Biodegradation of agricultural plastic films: a critical review. J. Polym. Environ. 15, 125–150 (2007). https://doi.org/10.1007/s10924-007-0053-8

    Article  Google Scholar 

  12. Plastics Europe: Plastics—the Facts 2017: an analysis of european plastics production, demand and waste data (Online). https://www.plasticseurope.org/application/files/1715/2111/1527/Plastics_the_facts_2017_FINAL_for_website.pdf (2017)

  13. Alqahtani, F.K., Khan, M.I., Ghataora, G., Dirar, S.: Production of recycled plastic aggregates and its utilization in concrete. J. Mater. Civ. Eng. 29, 04016248 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001765

    Article  Google Scholar 

  14. Alqahtani, F.K., Ghataora, G., Khan, M.I., Dirar, S.: Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 148, 386–397 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.011

    Article  Google Scholar 

  15. Liu, P., Farzana, R., Rajarao, R., Sahajwalla, V.: Lightweight expanded aggregates from the mixture of waste automotive plastics and clay. Constr. Build. Mater. 145, 283–291 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.009

    Article  Google Scholar 

  16. Záleská, M., Pavlíková, M., Pokorný, J., Jankovský, O., Pavlík, Z., Černý, R.: Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 180, 1–11 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.250

    Article  Google Scholar 

  17. Andrade, L.B., Rocha, J.C., Cheriaf, M.: Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Manag. 27, 1190–1199 (2007). https://doi.org/10.1016/j.wasman.2006.07.020

    Article  Google Scholar 

  18. Badache, A., Benosman, A.S., Senhadji, Y., Mouli, M.: Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Constr. Build. Mater. 163, 40–52 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.069

    Article  Google Scholar 

  19. Choi, Y.-W., Moon, D.-J., Chung, J.-S., Cho, S.-K.: Effects of waste PET bottles aggregate on the properties of concrete. Cem. Concr. Res. 35, 776–781 (2005). https://doi.org/10.1016/j.cemconres.2004.05.014

    Article  Google Scholar 

  20. Hadipramana, J., Mokhatar, S.N., Samad, A.A.A., Hakim, N.F.A.: An exploratory compressive strength of concrete containing modified artificial polyethylene aggregate (MAPEA). IOP Conf. Ser.: Mater. Sci. Eng. 160, 012065 (2016). https://doi.org/10.1088/1757-899X/160/1/012065

    Article  Google Scholar 

  21. Silva, R.V., de Brito, J., Saikia, N.: Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates. Cem. Concr. Compos. 35, 23–31 (2013). https://doi.org/10.1016/j.cemconcomp.2012.08.017

    Article  Google Scholar 

  22. Saikia, N., De Brito, J.: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review. Constr. Build. Mater. 34, 385–401 (2012)

    Article  Google Scholar 

  23. Bernardeau, F., Perrin, D., Caro, A.S.: Valorization of waste thermoset material as a filler in thermoplastic: mechanical properties of phenolic molding compound waste-filled PP composites. J. Appl. Polym. Sci. 135, 45849 (2018)

    Article  Google Scholar 

  24. Yang, Y., Boom, R., Irion, B., van Heerden, D.-J., Kuiper, P., de Wit, H.: Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012). https://doi.org/10.1016/j.cep.2011.09.007

    Article  Google Scholar 

  25. Dhawan, R., Mohan Singh Bisht, B., Kumar, R., Kumari, S., Dhawana, S.K.: Recycling of plastic waste into tiles with reduced flammability and improved tensile strength. Process Saf. Environ. Prot. 124(2019), 299–307 (2019). https://doi.org/10.1016/j.psep.2019.02.018

    Article  Google Scholar 

  26. Tagaya, H., Suzuki, Y., Asou, T., Kadokawa, J., Chiba, K.: Reaction of model compounds of phenol resin and molding materials of phenol resin in supercritical water for chemical recycling of polymer waste. Chem. Lett. 27, 937–938 (1998). https://doi.org/10.1246/cl.1998.937

    Article  Google Scholar 

  27. Suzuki, Y., Tagaya, H., Asou, T., Kadokawa, J., Chiba, K.: Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind. Eng. Chem. Res. 38, 1391–1395 (1999). https://doi.org/10.1021/ie9805842

    Article  Google Scholar 

  28. Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B: Biol. Sci. 364, 2115–2126 (2009). https://doi.org/10.1098/rstb.2008.0311

    Article  Google Scholar 

  29. Association Française de Normalisation (AFNOR): Plastics—polypropylene (PP) moulding and extrusion materials—Part 2: Preparation of test specimens and determination of properties. AFNOR; Standard No. ISO 19069-2, Brussels (2016)

  30. Association Française de Normalisation (AFNOR): Plastics—polyethylene (PE) moulding and extrusion materials—Part 2: preparation of test specimens and determination of properties. AFNOR; Standard No. ISO 17855 -2, Brussels (2016)

  31. Association Française de Normalisation (AFNOR): Plastics—impact-resistant polystyrene (PS-I) moulding and extrusion materials—Part 2: preparation of test specimens and determination of properties. AFNOR; Standard No. NF EN ISO 2897-2, Brussels

  32. Association Française de Normalisation (AFNOR): Fine ceramics (advanced ceramics,advanced technical ceramics) determination of specific surface area of ceramic powders by gas adsorption using the BET method. AFNOR; Standard No NF EN ISO 18757, Brussels

  33. Association Française de Normalisation (AFNOR): Soils: recognition and testing—determination of the organic content by weight of a material—calcination method. AFNOR; Standard No XP P94-047, Brussels

  34. Association Française de Normalisation (AFNOR): Soils: investigation and testing—measuring of the methylene blue adsorption capacity of a rocky soil—determination of the methylene blue of a soil by means of the stain test. AFNOR; Standard No NF P 94-068, Brussels

  35. Association Française de Normalisation (AFNOR) : Tests for mechanical and physical properties of aggregates part 7: determination of the particle density of filler—pyknometer method. AFNOR; Standard No NF EN 1097-7, Brussels

  36. Association Française de Normalisation (AFNOR): Leaching—compliance test for leaching of granular waste materials and sludges—part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). AFNOR; Standard No NF EN 12457-2, Brussels

  37. Lecomte, A., Mechling, J.-M., Diliberto, C.: Compaction index of cement paste of normal consistency. Constr. Build. Mater. 23, 3279–3286 (2009). https://doi.org/10.1016/j.conbuildmat.2009.05.005

    Article  Google Scholar 

  38. Association Française de Normalisation (AFNOR): Methods of testing cement—Part 3 : determination of setting times and soundness. AFNOR; Standard No NF EN 196-3, Brussels

  39. Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 3 : determination of loose bulk density and voids. AFNOR; Standard No NF EN 1097-3, Brussels

  40. Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 6: determination of particle density and water absorption. AFNOR; Standard No NF EN 1097-6, Brussels

  41. Association Française de Normalisation (AFNOR): Lightweight aggregates—Part 1: lightweight aggregates for concrete and mortar. AFNOR; Standard No NF EN 1097-11, Brussels

  42. Association Française de Normalisation (AFNOR): Tests for mechanical and physical properties of aggregates—Part 1: determination of the resistance to wear (micro-Deval). AFNOR; Standard No NF EN 13055-1, Brussels

  43. Association Française de Normalisation (AFNOR): Tests for geometrical properties of aggregates Part 1: determination of particle size distribution—sieving method. AFNOR; Standard No NF EN 933-1, Brussels

  44. De Larrard, F.: Concrete mixture proportioning: a scientific approach. E & FN Spon, London (1999)

    Book  Google Scholar 

  45. Sedran, T., de Larrard, F., RENÉ-LCPC: un logiciel pour optimiser la granularité des matériaux de génie civil. Un logiciel pour optimiser la granularité des matériaux de génie civil”, Note technique, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, N°194, NovembreDécembre (1994)

  46. Yang, S., Yue, X., Liu, X., Tong, Y.: Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 84, 444–453 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.038

    Article  Google Scholar 

  47. Iucolano, F., Liguori, B., Caputo, D., Colangelo, F., Cioffi, R.: Recycled plastic aggregate in mortars composition: effect on physical and mechanical properties. Mater. Des. (1980-2015) 52(2013), 916–922 (2013). https://doi.org/10.1016/j.matdes.2013.06.025

    Article  Google Scholar 

  48. Ismail, Z.Z., AL-Hashmi, E.A.: Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 28(2008), 2041–2047 (2008). https://doi.org/10.1016/j.wasman.2007.08.023

    Article  Google Scholar 

  49. Tittareli, F., Shah, S.P.: Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Constr. Build. Mater. 47, 1532–1538 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.043

    Article  Google Scholar 

  50. Hannawi, K., Kamali-Bernard, S., Prince, W.: Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Manag. 30, 2312–2320 (2010). https://doi.org/10.1016/j.wasman.2010.03.028

    Article  Google Scholar 

  51. Jansen, D., Kiggins, M., Swan, C., Malloy, R., Kashi, M., Chan, R., Javdekar, C., Siegal, C., Weingram, J.: Lightweight fly ash-plastic aggregates in concrete. Transp. Res. Rec.: J. Transp. Res. Board 1775, 44–52 (2001). https://doi.org/10.3141/1775-07

    Article  Google Scholar 

  52. Záleská, M., Pavlíková, M., Pavlík, Z.: Properties of lightweight cement-based composites containing waste polypropylene, p. 040030. Terchova, Slovakia (2016). https://doi.org/10.1063/1.4955261

  53. Batayneh, M., Marie, I., Asi, I.: Use of selected waste materials in concrete mixes. Waste Manag. 27, 1870–1876 (2007). https://doi.org/10.1016/j.wasman.2006.07.026

    Article  Google Scholar 

  54. Liu, F., Yan, Y., Li, L., Lan, C., Chen, G.: Performance of recycled plastic-based concrete. J. Mater. Civ. Eng. 27, A4014004 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0000989

    Article  Google Scholar 

  55. Shayan, A., Xu, A.: Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs. Cem. Concr. Res. 36, 457–468 (2006). https://doi.org/10.1016/j.cemconres.2005.12.012

    Article  Google Scholar 

  56. Neville, A.M., Brooks, J.J.: Concrete Technology, p. 460. Pearson, Harlow (2010)

    Google Scholar 

Download references

Funding

The authors thank, European Regional Development Fund (ERDF) and the Haut-de-France Region for their financial support to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Ennahal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennahal, I., Maherzi, W., Benzerzour, M. et al. Performance of Lightweight Aggregates Comprised of Sediments and Thermoplastic Waste. Waste Biomass Valor 12, 515–530 (2021). https://doi.org/10.1007/s12649-020-00970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00970-1

Keywords

Navigation