Skip to main content

Advertisement

Log in

Antimicrobial and Catalytic Potential of Soymida febrifuga Aqueous Fruit Extract-Engineered Silver Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology has changed the outlook of researchers towards science and technology. The past decade has experienced an enormous upshot of applications of nanoparticles and nanomaterials. The enhanced surface area of the particles due to their nanosize is contributing to the wide range of applications for which nanoparticles are used. In the present study, fruits of a medicinal tree, Soymida febrifuga belonging to the family Meliaceae, were used for the synthesis of silver nanoparticles (AgNPs). The water-soluble phytochemicals extracted from the dried fruits of Soymida febrifuga were used as reducing and stabilizing agents in the reduction of Ag+ to nano-silver. The AgNPs were characterized using various instrumental methods such as UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), Nanoparticle analyzer, Scanning Electron Microscope (SEM), Energy dispersive X-ray analysis (EDAX), and Transmission Electron Microscope (TEM). The characterization studies revealed that the AgNPs were mostly spherical in shape and crystalline in nature with an average particle size of 14.27 nm. The Soymida febrifuga aqueous fruit extract-engineered AgNPs were tested for their antimicrobial activity. The AgNPs were tested for their ability to suppress the growth of two gram-positive bacterial strains, Bacillus subtilis and Escherichia coli, and two gram-negative bacterial strains, Staphylococcus aureus and Pseudomonas putrida. The inhibitory concentration of 0.54 μg/L AgNPs synthesized from the aqueous fruit extract of Soymida febrifuga is the lowest reported till date. The prepared AgNPs were used as effective catalysts in the degradation of Congo red (CR), Bromocresol green (BCG), and Bromophenol blue (BPB) dyes in presence of Sodium borohydride (NaBH4). The developed method is a facile and rapid method of green and eco-friendly synthesis of AgNPs using a minute amount of plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Jung, J. H., Cheol Oh, H., Soo Noh, H., et al. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of Aerosol Science, 37, 1662–1670. https://doi.org/10.1016/j.jaerosci.2006.09.002.

    Article  Google Scholar 

  2. Mafuné, F., Kohno, J., Takeda, Y., et al. (2000). Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. The Journal of Physical Chemistry. B, 104, 8333–8337. https://doi.org/10.1021/jp001803b.

    Article  Google Scholar 

  3. Tsuji, T., Kakita, T., & Tsuji, M. (2003). Preparation of nano-size particles of silver with femtosecond laser ablation in water. Applied Surface Science, 206, 314–320. https://doi.org/10.1016/S0169-4332(02)01230-8.

    Article  Google Scholar 

  4. Kim, D., Jeong, S., & Moon, J. (2006). Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 17, 4019–4024. https://doi.org/10.1088/0957-4484/17/16/004.

    Article  Google Scholar 

  5. Oliveira, M. M., Ugarte, D., Zanchet, D., & Zarbin, A. J. G. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292, 429–435. https://doi.org/10.1016/j.jcis.2005.05.068.

    Article  Google Scholar 

  6. Zhang, W., Qiao, X., & Chen, J. (2007). Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299, 22–28. https://doi.org/10.1016/j.colsurfa.2006.11.012.

    Article  Google Scholar 

  7. Ahmad, A., Mukherjee, P., Senapati, S., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloids Surfaces B Biointerfaces, 28, 313–318. https://doi.org/10.1016/S0927-7765(02)00174-1.

    Article  Google Scholar 

  8. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., et al. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of bacillus licheniformis. Materials Letters, 62, 4411–4413. https://doi.org/10.1016/j.matlet.2008.06.051.

    Article  Google Scholar 

  9. Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., et al. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry, 42, 919–923. https://doi.org/10.1016/j.procbio.2007.02.005.

    Article  Google Scholar 

  10. Begum, N. A., Mondal, S., Basu, S., et al. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surfaces B Biointerfaces, 71, 113–118. https://doi.org/10.1016/j.colsurfb.2009.01.012.

    Article  Google Scholar 

  11. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638. https://doi.org/10.1039/c1gc15386b.

    Article  Google Scholar 

  12. Santhoshkumar, T., Rahuman, A. A., Rajakumar, G., et al. (2011). Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology Research, 108, 693–702. https://doi.org/10.1007/s00436-010-2115-4.

    Article  Google Scholar 

  13. Sadeghi, B., Rostami, A., & Momeni, S. S. (2015). Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 134, 326–332. https://doi.org/10.1016/j.saa.2014.05.078.

    Article  Google Scholar 

  14. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 134, 310–315. https://doi.org/10.1016/j.saa.2014.06.046.

    Article  Google Scholar 

  15. Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 373–378. https://doi.org/10.1016/j.saa.2014.07.045.

    Article  Google Scholar 

  16. Vilchis-Nestor, A. R., Sánchez-Mendieta, V., Camacho-López, M. A., et al. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62, 3103–3105. https://doi.org/10.1016/j.matlet.2008.01.138.

    Article  Google Scholar 

  17. Li, S., Shen, Y., Xie, A., et al. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858. https://doi.org/10.1039/B615357G.

    Article  Google Scholar 

  18. Singhal, G., Bhavesh, R., Kasariya, K., et al. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. https://doi.org/10.1007/s11051-010-0193-y.

    Article  Google Scholar 

  19. Obaid, A. Y., Al-Thabaiti, S. A., El-Mossalamy, E. H., et al. (2015). Extracellular bio-synthesis of silver nanoparticles. Arabian Journal of Chemistry, 10, 226–231. https://doi.org/10.1016/j.arabjc.2014.12.035.

    Article  Google Scholar 

  20. Devadiga, A., Shetty, K. V., & Saidutta, M. B. (2015). Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. International Nano Letters, 5, 205–214. https://doi.org/10.1007/s40089-015-0157-4.

    Article  Google Scholar 

  21. Johnson, I., & Prabu, H. J. (2015). Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. International Nano Letters, 5, 43–51. https://doi.org/10.1007/s40089-014-0136-1.

    Article  Google Scholar 

  22. Kumar, R., Roopan, S. M., Prabhakarn, A., et al. (2012). Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 173–176. https://doi.org/10.1016/j.saa.2012.01.029.

    Article  Google Scholar 

  23. Moyo, M., Gomba, M., & Nharingo, T. (2015). Afzelia quanzensis bark extract for green synthesis of silver nanoparticles and study of their antibacterial activity. International Journal of Industrial Chemistry, 6, 329–338. https://doi.org/10.1007/s40090-015-0055-7.

    Article  Google Scholar 

  24. Jayapriya, E., & Lalitha, P. (2013). Synthesis of silver nanoparticles using leaf aqueous extract of Ocimum basilicum (L.) International Journal of ChemTech Research, 5, 2985–2992.

    Google Scholar 

  25. Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., & Lee, S. M. (2012). Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers, 88, 1077–1086. https://doi.org/10.1016/j.carbpol.2012.01.073.

    Article  Google Scholar 

  26. Selvi, K., & Sivakumar, T. (2012). Isolation and characterization of silver nanoparticles from Fusarium oxysporum. International Journal of Current Microbiology and Applied Sciences, 1, 56–62.

    Google Scholar 

  27. Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2012). Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanoscience and Nanotechnology, 2, 164–170. https://doi.org/10.5923/j.nn.20120206.03.

    Article  Google Scholar 

  28. Awwad, M. A., Salem, N. M., Ibrahim, Q. M., & Abdeen, A. O. (2015). Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia Julibrissin flowers extract. Advanced Materials Letters, 6, 726–730. https://doi.org/10.5185/amlett.2015.5816.

    Article  Google Scholar 

  29. Kalaiarasi, S., & Jose, M. (2017). Streptomycin loaded TiO2 nanoparticles: preparation, characterization and antibacterial applications. Journal of Nanostructure in Chemistry, 7, 47–53. https://doi.org/10.1007/s40097-016-0213-2.

    Article  Google Scholar 

  30. Abbasi, Z., Feizi, S., Taghipour, E., & Ghadam, P. (2017). Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Processing and Synthesis. https://doi.org/10.1515/gps-2016-0108.

  31. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran, 19, 2023–2028. https://doi.org/10.1016/j.scient.2012.10.005.

    Article  Google Scholar 

  32. Sowmyya, T., & Vijayalakshmi, G. (2017). Spectroscopic investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using Soymida febrifuga aqueous stem bark extract. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2017.01.045.

  33. Araujo, C. S. T., Carvalho, D. C., Rezende, H. C., et al. (2013). Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. Applied Bioremediation - Active and Passive Approaches. https://doi.org/10.5772/56157.

  34. Singh, R., Sahu, S. K., & Thangaraj, M. (2014). Biosynthesis of silver nanoparticles by marine invertebrate (Polychaete) and assessment of its efficacy against human pathogens. Journal of Nanoparticles, 2014, 1–7. https://doi.org/10.1155/2014/718240.

    Article  Google Scholar 

  35. Yoganarasimhan SN (1996). Medicinal plants of India, vol 1. Karnataka: Interline Publishing.

  36. Sowmyya, T., & Vijayalakshmi, G. (2016). Green synthesis and characterization of silver nanoparticles using Soymida febrifuga aqeuous leaf extract. World Journal of Pharmaceutical Sciences, 5, 786–805.

    Google Scholar 

  37. Sun, Q., Cai, X., Li, J., et al. (2014). Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 226–231. https://doi.org/10.1016/j.colsurfa.2013.12.065.

    Article  Google Scholar 

  38. Christensen, L., Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2011). Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters, 2, 429–434. https://doi.org/10.5185/amlett.2011.4256.

    Article  Google Scholar 

  39. Preetha D, Arun R, Kumari P, Aarti C (2013). Synthesis and characterization of silver nanoparticles using cannonball leaves and its cytotoxic activity against Mcf-7 cell line. Journal of Nanotechnology, 2013. https://doi.org/10.1155/2013/598328

  40. Balashanmugam, P., & Kalaichelvan, P. T. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10, 87–97. https://doi.org/10.2147/IJN.S79984.

    Article  Google Scholar 

  41. Vanaja, M., Paulkumar, K., Baburaja, M., et al. (2014). Degradation of methylene blue using biologically. Bioinorganic Chemistry and Applications, 2014, 1–8. https://doi.org/10.1155/2014/742346.

    Article  Google Scholar 

  42. Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12, 7–11. https://doi.org/10.4314/tjpr.v12i1.2.

    Google Scholar 

  43. Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Science, 9, 217–227. https://doi.org/10.1016/j.jrras.2015.10.002.

    Article  Google Scholar 

  44. Das, B., Dash, S. K., Mandal, D., et al. (2015). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.08.008.

  45. Mollick, M. M. R., Rana, D., Dash, S. K., et al. (2015). Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.04.033.

  46. Kouvaris, P., Delimitis, A., Zaspalis, V., et al. (2012). Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 76, 18–20. https://doi.org/10.1016/j.matlet.2012.02.025.

    Article  Google Scholar 

  47. Raut, R. W., Mendhulkar, V. D., & Kashid, S. B. (2014). Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. Journal of Photochemistry and Photobiology B: Biology, 132, 45–55. https://doi.org/10.1016/j.jphotobiol.2014.02.001.

    Article  Google Scholar 

  48. Dhand, V., Soumya, L., Bharadwaj, S., et al. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43. https://doi.org/10.1016/j.msec.2015.08.018.

    Article  Google Scholar 

  49. Maiti, S., Purakayastha, S., & Ghosh, B. (2007). Production of low-cost carbon adsorbents from agricultural wastes and their impact on dye adsorption. Chemical Engineering Communications, 195, 386–403. https://doi.org/10.1080/00986440701707917.

    Article  Google Scholar 

  50. Kolya H, Maiti P, Pandey A, Tripathy T (2015). Green synthesis of silver nanoparticles with antimicrobial and azo dye (congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. Journal of Analytical Science and Technology, 6, 33. doi: https://doi.org/10.1186/s40543-015-0074-1.

  51. Choudhary, B. C., Paul, D., Gupta, T., et al. (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. Journal of Environmental Sciences (China), 55, 236–246. https://doi.org/10.1016/j.jes.2016.05.044.

    Article  Google Scholar 

  52. Vidhu, V. K., & Philip, D. (2014). Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 56, 54–62. https://doi.org/10.1016/j.micron.2013.10.006.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DMRL, Kanchanbagh, Hyderabad, and CFRD, Osmania University, Hyderabad, for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sowmyya T.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Biosynthesis of AgNPs from aqueous fruit extract of Soymida febrifuga reported for the first time.

• AgNPs were spherical, crystalline, and with an average particle size of 14.27 nm as observed from TEM.

• Lowest antimicrobial efficacy of AgNPs was observed.

• AgNPs as catalyst in reduction and decolorization reactions of organic dyes were studied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T, S., G, V.L. Antimicrobial and Catalytic Potential of Soymida febrifuga Aqueous Fruit Extract-Engineered Silver Nanoparticles. BioNanoSci. 8, 179–195 (2018). https://doi.org/10.1007/s12668-017-0458-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0458-3

Keywords

Navigation