Skip to main content
Log in

Big Vee: The story of a function, an algorithm, and three mathematical worlds

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

The Dubins-Savage theory of gambling takes place in a world of finitely additive probability measures defined on all subsets of a set of arbitrary cardinality. When the theory is specialized to a more conventional world of countably additive measures defined on the Borel subsets of a standard Borel space, the question arises whether the gambler is harmed when restricted to measurable strategies; that is, whether the optimal reward function V remains the same. The answer to this question uses methods from the world of descriptive set theory. Ashok Maitra was perhaps the unique person who was completely at home in all three of these mathematical worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhaskara Rao, K.P.S. and Bhaskara Rao, M. (1983). Theory of charges: A Study of Finitely Additive Measures. Academic Press, London.

    MATH  Google Scholar 

  • Blackwell, D., Freedman, D. and Orkin, M. (1974). The optimal reward operator in dynamic programming. Ann. Probab., 2, 926–941.

    Article  MATH  MathSciNet  Google Scholar 

  • Blackwell, D. (1989). Operator solution of infinite Gδ games of imperfect information. In Probability, Statistics, and Mathematics Papers in Honor of Samuel Karlin, (T.W. Anderson, K. Athreya, and D.H. Iglehart, eds.). Academic Press, New York, 83–87.

    Google Scholar 

  • Chen, R. (1975). A note on the Dubins-Savage utility of a strategy. Israel J. Math., 21, 1–6.

    Article  MathSciNet  Google Scholar 

  • Dellacherie, C. and Meyer, P.A. (1975). Ensembles analytiques et temps d’arrêt. In Seminaire de Probabilités IX, Lecture Notes in Mathematics 465. Springer-Verlag, Berlin, 373–389.

    Google Scholar 

  • Dubins, L.E. (1974). On Lebesgue-like extensions of finitely additive measures. Ann. Probab., 2, 226–241.

    Google Scholar 

  • Dubins, L., Maitra, A., Purves, R. and Sudderth, W. (1989). Measurable, nonleavable gambling problems. Israel J. Math., 67, 257–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Dubins, L.E. and Savage, L.J. (1965). How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw-Hill, New York. (2nd edition (1976). Inequalities for stochastic processes. Dover, New York.)

    MATH  Google Scholar 

  • Dunford, N. and Schwartz, J.T. (1958). Linear Operators, Part I: General Theory. Interscience Publishers, New York.

    Google Scholar 

  • Kechris, A.S. (1995). Classical Descriptive Set Theory. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Louveau, A. (1981–82). Capacitabilité et sélections Boreliennes. In Séminaire Initiation à l’Analyse 21, Publications Mathématiques de l’Université Pierre et Marie Curie, 54, 19-01–19-21.

    Google Scholar 

  • Maitra, A. and Parthasarathy, T. (1970). On stochastic games. J. Optim. Theory Appl., 5, 289–300.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A. and Parthasarathy, T. (1971). On stochastic games, II. J. Optim. Theory Appl., 8, 154–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A., Purves, R. and Sudderth, W. (1990). Leavable gambling problems with unbounded utilities. Trans. Amer. Math. Soc., 320, 543–567.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A., Purves, R. and Sudderth, W. (1991a). A Borel measurable version of Konig’s Lemma for random paths. Ann. Probab., 19, 423–451.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A., Purves, R. and Sudderth, W. (1991b). A capacitability theorem in finitely additive gambling. Rend. Mat. Appl. (7), 11, 819–842.

    MATH  MathSciNet  Google Scholar 

  • Maitra, A., Purves, R. and Sudderth, W. (1992). A capacitability theorem in measurable gambling theory. Trans. Amer. Math. Soc., 333, 221–249.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A.P. and Sudderth, W.D. (1992). An operator solution of stochastic games. Israel J. Math., 78, 33–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A.P. and Sudderth, W.D. (1993). Borel stochastic games with lim sup payoff. Ann. Probab., 21, 861–885.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A.P. and Sudderth, W.D. (1996). Discrete Gambling and Stochastic Games. Springer, New York.

    MATH  Google Scholar 

  • Maitra, A.P. and Sudderth, W.D. (1998). Finitely additive stochastic games with Borel measurable payoffs. Internat. J. Game Theory, 27, 257–267.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A. and Sudderth, W. (2003). Borel stay-in-a-set games. Internat. J. Game Theory, 32, 97–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Maitra, A. and Sudderth, W. (2007). Subgame-perfect equilibria for stochastic games. Math. Oper. Res., 32, 711–722.

    Article  MATH  MathSciNet  Google Scholar 

  • Martin, D.A. (1998). The determinacy of Blackwell games. J. Symbolic Logic, 63, 1565–1581.

    Article  MATH  MathSciNet  Google Scholar 

  • Meyer, P.A. and Traki, M (1971). Réduites et jeux de hasard. In Seminaire de Probabilités VII, Lecture Notes in Mathematics, 321. Springer-Verlag, Berlin, 155–171.

    Google Scholar 

  • Monticino, M. (1991). The adequacy of universal strategies in analytic gambling problems. Math. Oper. Res., 16, 21–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Moschovakis, Y.N. (1980). Descriptive Set Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Purves, R. and Sudderth, W. (1976). Some finitely additive probability. Ann. Probab., 4, 259–276.

    Article  MATH  MathSciNet  Google Scholar 

  • Secchi, P. and Sudderth, W. (2001). Stay-in-a-set games. Internat. J. Game Theory, 30, 479–490.

    Article  MATH  MathSciNet  Google Scholar 

  • Strauch, R. (1967). Measurable gambling houses. Trans. Amer. Math. Soc., 126, 64–72.

    MathSciNet  Google Scholar 

  • Sudderth, W. (1971). On measurable gambling problems. Ann. Math. Statist., 42, 260–269.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Purves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purves, R., Sudderth, W. Big Vee: The story of a function, an algorithm, and three mathematical worlds. Sankhya 72, 37–63 (2010). https://doi.org/10.1007/s13171-010-0014-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-010-0014-5

AMS (2000) subject classification

Keywords and phrases

Navigation