Skip to main content
Log in

Arginine-rich Peptide Coated PLGA Nanoparticles Enhance Polymeric Delivery of Antisense HIF1α-oligonucleotide to Fully Differentiated Stiff Adipocytes

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was developing the new delivery system of antisense HIF1α oligodeoxynucleotide (ASO) into the stiff adipocytes. As the adipogenesis progressed, accumulating lipid droplet in cytosol lead adipocytes membrane stiffness and difficulties in the delivery of therapeutic agents into the cytosol. Hypoxia affects a number of biological functions including angiogenesis, apoptosis, inflammation, and adipogenesis. Hypoxia-inducible transcription factor-1 alpha (HIF1α) is a major transcription factor that controls metabolic and adipogenic gene expression under hypoxia. Controlling HIFα expression can be a promising therapy for obesity treatment.

Methods

The ASO was synthesized and used in a complex with polylactic-co-glycolic acid (PLGA) nanoparticles (NP). To enhance the cell-penetrating capacity, the PLGA-ASO-NP complex was coated with arginine-rich peptide (ARP) in different N:P molar ratios (PLGA-ASO-NP:ARP = 1: 1, 2: 1, 5: 1). To examine the intracellular and intranuclear delivery, these complexes were treated to fully differentiated adipocyte.

Results

The PLGA-ASO-NP/ARP improved the efficacy of ASO-delivery into stiff adipocytes by increasing the cell surface charge, determined by the zeta potential, and forming polyplexes with small particle size. The proper N:P molar ratio of PLGA-ASO-NP/ARP synthesis was 5:1 with significantly improved gene delivery efficiency and intracellular uptake in adipocytes. Furthermore, PLGA-ASO-NP/ARP was stable in serum for 8 h compared to naked ASO.

Conclusion

These results suggest that the PLGA-ASO-NP/ARP can provide an effective and serum-stable gene-delivery system, especially for cells with a stiff cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barness, L. A., Opitz, J. M. & Gilbert-Barness, E. Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. A. 143A, 3016–3034 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hjartaker, A., Langseth, H. & Weiderpass, E. Obesity and diabetes epidemics: cancer repercussions. Adv. Exp. Med. Biol. 630, 72–93 (2008).

    Article  PubMed  Google Scholar 

  3. Zhu, Y. et al. A novel type of self-assembled nanoparticles as targeted gene carriers: an application for plasmid DNA and antimicroRNA oligonucleotide delivery. Int. J. Nanomedicine 11, 399–410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mykhaylyk, O. et al. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro. Methods. Mol. Biol. 1218, 53–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Le, T. D., Nakagawa, O., Fisher, M., Juliano, R. L. & Yoo, H. RGD Conjugated Dendritic Polylysine for Cellular Delivery of Antisense Oligonucleotide. J. Nanoc. 17, 2353–2357 (2017).

    CAS  Google Scholar 

  6. Jabs, D. A. & Griffiths, P. D. Fomivirsen for the treatment of cytomegalovirus retinitis. Am. J. Ophthalmol. 133, 552–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Shoham, N. et al. Adipocyte stiffness increases with accumulation of lipid droplets. Biophys. J. 106, 1421–1431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, C. & Liu, P. The lipid droplet: A conserved cellular organelle. Protein & Cell 8, 796–800 (2017).

    Article  CAS  Google Scholar 

  9. Garcia-Chaumont, C., Seksek, O., Grzybowska, J., Borowski, E. & Bolard, J. Delivery systems for antisense oligonucleotides. Pharmacol. Ther. 87, 255–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Gao, J. Q. et al. Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J. Control. Release. 122, 102–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Park, K. Non-ionic polymersomes for delivery of oligonucleotides. J. Control. Release. 134, 73 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, Y. et al. Polymersome delivery of siRNA and antisense oligonucleotides. J. Control. Release. 134, 132–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. McClorey, G. & Banerjee, S. Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics. Biomedicines 6 (2018).

  14. Astriab-Fisher, A., Sergueev, D., Fisher, M., Shaw, B. R. & Juliano, R. L. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19, 744–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Dong, L. et al. Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J. Control. Release. 134, 214–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Fisher, A. A. et al. Evaluating the specificity of antisense oligonucleotide conjugates. A DNA array analysis. J. Biol. Chem. 277, 22980–22984 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Luten, J., van Nostrum, C. F., De Smedt, S. C. & Hennink, W. E. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J. Control. Release. 126, 97–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ropelle, E. R. et al. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats. J. Phtsiol. 587, 2341–2351 (2009).

    Article  CAS  Google Scholar 

  19. Langhi, C. et al. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J. Lipid. Res. 58, 81–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, Y. et al. Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment. Sci. Rep. 7, 9307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crooke, R. M. et al. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J. Lipid. Res. 46, 872–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Helsley, R. N. et al. Targeting IkappaB kinase beta in Adipocyte Lineage Cells for Treatment of Obesity and Metabolic Dysfunctions. Stem Cells 34, 1883–1895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, X. X. et al. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice. PLoS One 8, e66923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Popov, V. B. et al. Second-generation antisense oligonucleotides against beta-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB. J. 30, 1207–1217 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Watts, L. M. et al. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 54, 1846–1853 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Vitto, M. F. et al. Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice. Horm. Metab. Res. 44, 885–890 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Park, Y. S. et al. Specific down regulation of 3T3-L1 adipocyte differentiation by cell-permeable antisense HIF1alpha-oligonucleotide. J. Control. Release. 144, 82–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takashima, Y. et al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int. J. Pharm. 343, 262–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Kolte, A., Patil, S., Lesimple, P., Hanrahan, J. W. & Misra, A. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int. J. Pharm. 524, 382–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Fleischmann, E. et al. Tissue oxygenation in obese and non-obese patients during laparoscopy. Obes. Surg. 15, 813–819 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malcolm, D. W., Varghese, J. J., Sorrells, J. E., Ovitt, C. E. & Benoit, D. S. W. The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System. ACS. nano. 12, 187–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, C. et al. Theranostic poly (lactic-co-glycolic acid) nanoparticle for magnetic resonance/infrared fluorescence bimodal imaging and efficient siRNA delivery to macrophages and its evaluation in a kidney injury model. Nanomedicine 13, 2451–2462 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Brock, R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug. Chem. 25, 863–868 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Park, Y. J. et al. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB. J. 19, 1555–1557 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. T. et al. Preliminary in vivo evaluation of the protein transduction domain-modified ATTEMPTS approach in enhancing asparaginase therapy. J. Biomed. Mater. Res. A. 91, 209–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ahn, S., Seo, E., Kim, K. & Lee, S. J. Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci. Rep. 3, 1997 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Letters 9, 1080–1084 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Pindiprolu, S., Chintamaneni, P. K., Krishnamurthy, P. T. & Ratna Sree Ganapathineedi, K. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev. Ind. Pharm. 1–10 (2018).

    Google Scholar 

  40. dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7, 3341–3349 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Harush-Frenkel, O., Debotton, N., Benita, S. & Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353, 26–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 6, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Midoux, P. & Monsigny, M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10, 406–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Junghans, M., Kreuter, J. & Zimmer, A. Antisense delivery using protamine-oligonucleotide particles. Nucleic Acids Res. 28, E45 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harush-Frenkel, O., Rozentur, E., Benita, S. & Altschuler, Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9, 435–443 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Cu, Y., LeMoellic, C., Caplan, M. J. & Saltzman, W. M. Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency. Nanomedicine 6, 334–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7, 588–595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R. & Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8, 848–866 (2007).

    Article  CAS  Google Scholar 

  49. Park, Y. S. et al. Controlled release of simvastatin from in situ forming hydrogel triggers bone formation in MC3T3-E1 cells. AAPS. J. 15, 367–376 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B4002611), and partly by the Technological innovation R&D program of SMBA (S2449311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Shin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D.H., Park, Y.S. Arginine-rich Peptide Coated PLGA Nanoparticles Enhance Polymeric Delivery of Antisense HIF1α-oligonucleotide to Fully Differentiated Stiff Adipocytes. Toxicol. Environ. Health Sci. 11, 1–10 (2019). https://doi.org/10.1007/s13530-019-0382-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-019-0382-8

Keywords

Navigation