Skip to main content
Log in

Synthesis and photocatalytic activity assessing of the TiO2 nanocomposites modified by some lanthanide ions and tin-derivative sandwich-type polyoxometalates

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

New nanocomposites containing sandwich-type polyoxometalate of [(PW9O34)2(HOSnIVOH)3]12− (P2W18Sn3) loaded onto Ln-doped TiO2 (Nd, Sm, Dy, Tb) nanoparticles were synthesized and their catalytic activities were assessed. The Ln–TiO2 nanoparticles and Ln–TiO2/P2W18Sn3 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, field emission scanning electron microscope, energy dispersive analysis of X-rays spectra and diffuse reflectance spectra. The photocatalytic efficiency of the Ln–TiO2 and Ln–TiO2/P2W18Sn3 were examined in the photodegradation of methyl orange and methylene blue solutions. It was revealed through different characterization techniques that the P2W18Sn3 was successfully loaded on the lanthanide-doped anatase phase TiO2 nanoparticles and the particles diameter were relatively 20–30 nanometers. It was revealed that doping by the lanthanide ions followed by loading of polyoxometalates improves the photocatalytic performance of TiO2 effectively. The effects of operational parameters and the kinetics of photocatalytic degradation under UV light were discussed. The prepared nanocomposites were stable and could be easily separated from the reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.H. Nicollian., J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp. 235

    Google Scholar 

  2. A. Liu. R. Jones., L. Liao. D. Samara-Rubio. D. Rubin. O. Cohen. R. Nicolaescu, M. Paniccia, Nature 427, 615 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. F. Amano. A. Yamakata., K. Nogami., M. Osawa, B. Ohtani, J. Am. Chem. Soc. 130, 17650 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. X. Fu. L.A. Clark. Q. Yang, M.A. Anderson, Environ. Sci. Technol. 30, 647 (1996)

    Article  CAS  Google Scholar 

  5. Z. Zou. J. Ye. K. Sayama, H. Arakawa, Nature 414, 625 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. M.G. Antoniou, C. Zhao, K.E. O’Shea, G. Zhang, D.D. Dionysiou, C. Zhao, C. Han, M.N. Nadagouda, H. Choi, T. Fotiou, in Photocatalysis Applications, ed. by D.D. Dionysiou (RSC Energy and Environment Series, UK, 2016), p. 1

    Google Scholar 

  7. S. Parsons, in Advanced oxidation processes for water and wastewater treatment, ed. by S. Parsons (IWA, London, 2004), p. 280

    Google Scholar 

  8. M.M. Tauber., G.M. Gübitz, A. Rehorek, Bioresour. Technol. 99, 4213 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. R. Andreozzi. V. Caprio. A. Insola, R. Marotta, Catal. Today 53, 51 (1999)

    Article  CAS  Google Scholar 

  10. A.L. Linsebigler., G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  11. M.R. Hoffmann., S.T. Martin., W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  12. D. Chatterjee, A. Mahata, Appl. Catal. B 33, 119 (2001)

    Article  CAS  Google Scholar 

  13. Y. Yang. Y. Guo., C. Hu., Y. Wang, E. Wang, Appl. Catal. A 273, 201 (2004)

    Article  CAS  Google Scholar 

  14. A. Fujishima. T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. 1, 1 (2000)

    Article  CAS  Google Scholar 

  15. Y. Jiang. Y. Yang., L. Qiang., R. Fan., L. Li., T. Ye., Y. Na. Y. Shi, T. Luan, Phys. Chem. Chem. Phys. 17, 6778 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. L. Li, Q.-y. Wu. Y.-h. Guo, C.-w. Hu. Microporous Mesoporous Mater. 87, 1 (2005)

    Article  CAS  Google Scholar 

  17. W. Li. Y. Wang., H. Lin.. J. Chen, M. Barteau, S. Ismat Shah, C. Huang, D. Doren, S. A. Rykov, Appl. Phys. Lett. 83, 4143 (2003)

    Article  CAS  Google Scholar 

  18. C. Di Valentin, G. Pacchioni, Catal. Today 206, 12 (2013)

    Article  CAS  Google Scholar 

  19. J. Choi. H. Park, M.R. Hoffmann, J. Phys. Chem. C 114, 783 (2009)

    Article  CAS  Google Scholar 

  20. S. Feizpoor, A. Habibi-Yangjeh, Mater. Res. Bull. 99, 93 (2018)

    Article  CAS  Google Scholar 

  21. S. Feizpoor. A. Habibi-Yangjeh, S. Vadivel, J. Photochem. Photobiol. 341, 57 (2017)

    Article  CAS  Google Scholar 

  22. S. Kohtani. A. Kudo, T. Sakata, Chem. Phys. Lett. 206, 166 (1993)

    Article  CAS  Google Scholar 

  23. F. Zuo. L. Wang., T. Wu., Z. Zhang. D. Borchardt, P. Feng, J. Am. Chem. Soc. 132, 11856 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhou. C. Chen., N. Wang., Y. Li, H. Ding, J. Phys. Chem. C 120, 6116 (2016)

    Article  CAS  Google Scholar 

  25. J.I. Chen., G. von Freymann. V. Kitaev, G.A. Ozin, J. Am. Chem. Soc. 129, 1196 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. M. Ammam, J. Mater. Chem. 1, 6291 (2013)

    Article  CAS  Google Scholar 

  27. S.-S. Wang, G.-Y. Yang, Chem. Rev. 115, 4893 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. C.L. Hill, J. Mol. Catal. A Chem. 262, 2 (2007)

    Article  CAS  Google Scholar 

  29. S.-M. Wang, L. Liu, C. Wang, W.-L. Li, Z.-M. Chen, E.-B. Su, Ind. Eng. Chem. Res. 53, 150 (2014)

    Article  CAS  Google Scholar 

  30. A. Worayingyong. S. Sang-Urai. M. Smith. S. Maensiri, S. Seraphin, Appl. Phys. A 117, 1191 (2014)

    Article  CAS  Google Scholar 

  31. Y. Dong. J. Won. S. Jae Sung. H. Jung, S. Yang, Comput. Mater. Sci. 30, 383 (2004)

    Article  CAS  Google Scholar 

  32. P. Gregory, Dyes Pigm. 7, 45 (1986)

    Article  CAS  Google Scholar 

  33. R. Khoshnavazi. S. Fereydouni, L. Bahrami, Water Sci. Technol. 73, 1746 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. W. Ju. D. Zhang. D. Zhu, Y. Xu, Inorg. Chem. 51, 13373 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. P. Ramasamy., D.-M. Seo, S.-H. Kim, J. Kim, J. Mater. Chem. 22, 11651 (2012)

    Article  CAS  Google Scholar 

  36. P. Muthirulan. M. Meenakshisundararam, N. Kannan, J. Adv. Res 4, 479 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. A.E.H. Machado., J.A. de Miranda. R.F. de Freitas, L. de Oliveira, E.T.F. Duarte, L.F. Ferreira, Y.D. Albuquerque, R. Ruggiero, C. Sattler, J. Photochem. Photobiol. A 155, 231 (2003)

    Article  CAS  Google Scholar 

  38. A. Ajmal. I. Majeed., R.N. Malik. H. Idriss, M.A. Nadeem, Rsc Adv. 4, 37003 (2014)

    Article  CAS  Google Scholar 

  39. Y. Yang. Y. Guo. C. Hu., C. Jiang, E. Wang, J. Mater. Chem. 13, 1686 (2003)

    Article  CAS  Google Scholar 

  40. C. Chen. P. Lei.. H. Hidaka, N. Serpone, H. Ji, W. Ma, J. Zhao, Environ. Sci. Technol. 38, 329 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. M. Yoon. J.A. Chang., Y. Kim., J.R. Choi. K. Kim, S.J. Lee, J. Phys. Chem. B 105, 2539 (2001)

    Article  CAS  Google Scholar 

  42. R.L. McCormick., S.K. Boonrueng, A.M. Herring, Catal. Today 42, 145 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Kurdistan Research Council for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roushan Khoshnavazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2018_1375_MOESM1_ESM.doc

The plot of effective parameters on degradation kinetic of MO for Ln-TiO2/P2W18Sn3, the structural data and the plot of effective parameters on degradation kinetic of MO for Ln-TiO2/As2W18Sn3 (DOC 3059 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazhooh, P., Khoshnavazi, R., Bahrami, L. et al. Synthesis and photocatalytic activity assessing of the TiO2 nanocomposites modified by some lanthanide ions and tin-derivative sandwich-type polyoxometalates. J IRAN CHEM SOC 15, 1775–1783 (2018). https://doi.org/10.1007/s13738-018-1375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1375-2

Keywords

Navigation