Skip to main content

Advertisement

Log in

Alagille Syndrome: Genetics and Functional Models

  • Pathobiology of Orphan Diseases (S Ranganathan, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

We review the genetics of the autosomal dominant, multi-system disorder Alagille syndrome, and provide a summary on how current functional models and emerging biotechnologies are equipped to guide scientists towards novel therapies. The importance of haploinsufficiency as a disease mechanism will be underscored throughout this discussion.

Recent Findings

Alagille syndrome, a human disorder affecting the liver, heart, vasculature, kidney, and other systems, is caused by mutations in the Notch signaling pathway ligand, Jagged1 (JAG1) or the receptor, NOTCH2. Current advances in animal modeling, in vitro cell culture, and human-induced pluripotent stem cells provide new opportunities in which to study disease mechanisms and manifestations.

Summary

We anticipate that the availability of innovative functional models will allow scientists to test new gene therapies or small molecule treatments in physiologically-relevant systems. With these advances, we look forward to the development of new methods to help Alagille syndrome patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance

  1. Saleh M, Kamath BM, Chitayat D. Alagille syndrome: clinical perspectives. Appl Clin Genet. 2016;9:75–82. doi:10.2147/TACG.S86420.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spinner NB, Leonard LD, Krantz ID. Alagille Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH et. al., editors. Gene Reviews(®). Seattle (WA): University of Seattle; 2013.

  3. Kamath BM, Podkameni G, Hutchinson AL, Leonard LD, Gerfen J, Krantz ID, et al. Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A. 2012;158A(1):85–9. doi:10.1002/ajmg.a.34369.

    Article  PubMed  Google Scholar 

  4. Turnpenny PD, Ellard S. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2012;20(3):251–7. doi:10.1038/ejhg.2011.181.

    Article  CAS  PubMed  Google Scholar 

  5. Thebaut A, Habes D, Gottrand F, Rivet C, Cohen J, Debray D et al. Sertraline as an Additional Treatment for Cholestatic Pruritus in Children. J Pediatr Gastroenterol Nutr. 2016;64(3):431–5. doi: 10.1097/MPG.0000000000001385.

  6. Emerick KM, Whitington PF. Partial external biliary diversion for intractable pruritus and xanthomas in Alagille syndrome. Hepatology. 2002;35(6):1501–6. doi:10.1053/jhep.2002.33332.

    Article  PubMed  Google Scholar 

  7. Mattei P, von Allmen D, Piccoli D, Rand E. Relief of intractable pruritus in Alagille syndrome by partial external biliary diversion. J Pediatr Surg. 2006;41(1):104–7. doi:10.1016/j.jpedsurg.2005.10.014. discussion -7

    Article  PubMed  Google Scholar 

  8. Pawlowska J, Socha P, Jankowska I. Factors affecting catch-up growth after liver transplantation in children with cholestatic liver diseases. Ann Transplant. 2010;15(1):72–6.

    PubMed  Google Scholar 

  9. Grochowski CM, Loomes KM, Spinner NB. Jagged1 (JAG1): structure, expression, and disease associations. Gene. 2016;576(1 Pt 3):381–4. doi:10.1016/j.gene.2015.10.065.

    Article  CAS  PubMed  Google Scholar 

  10. Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol. 2012;23(4):450–7. doi:10.1016/j.semcdb.2012.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol. 2016;17(11):722–35. doi:10.1038/nrm.2016.94.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai EA, Gilbert MA, Grochowski CM, Underkoffler LA, Meng H, Zhang X, et al. THBS2 is a candidate modifier of liver disease severity in Alagille syndrome. Cell Mol Gastroenterol Hepatol. 2016;2(5):663–675 e2. doi:10.1016/j.jcmgh.2016.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krantz ID, Piccoli DA, Spinner NB. Alagille syndrome. J Med Genet. 1997;34(2):152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16(3):243–51. doi:10.1038/ng0797-243.

    Article  CAS  PubMed  Google Scholar 

  15. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42. doi:10.1038/ng0797-235.

    Article  CAS  PubMed  Google Scholar 

  16. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the NOTCH signaling pathway. Am J Hum Genet. 2006;79(1):169–73. doi:10.1086/505332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spinner NB, Colliton RP, Crosnier C, Krantz ID, Hadchouel M, Meunier-Rotival M. Jagged1 mutations in alagille syndrome. Hum Mutat. 2001;17(1):18–33. doi:10.1002/1098-1004(2001)17:1<18::AID-HUMU3>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  18. Bauer RC, Laney AO, Smith R, Gerfen J, Morrissette JJ, Woyciechowski S, et al. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat. 2010;31(5):594–601. doi:10.1002/humu.21231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu F, Morrissette JJ, Spinner NB. Conditional JAG1 mutation shows the developing heart is more sensitive than developing liver to JAG1 dosage. Am J Hum Genet. 2003;72(4):1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrissette JD, Colliton RP, Spinner NB. Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet. 2001;10(4):405–13.

    Article  CAS  PubMed  Google Scholar 

  21. Tada M, Itoh S, Ishii-Watabe A, Suzuki T, Kawasaki N. Functional analysis of the notch ligand Jagged1 missense mutant proteins underlying Alagille syndrome. FEBS J. 2012;279(12):2096–107. doi:10.1111/j.1742-4658.2012.08595.x.

    Article  CAS  PubMed  Google Scholar 

  22. Boyer-Di Ponio J, Wright-Crosnier C, Groyer-Picard MT, Driancourt C, Beau I, Hadchouel M, et al. Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on notch signaling. Hum Mol Genet. 2007;16(22):2683–92. doi:10.1093/hmg/ddm222.

    Article  CAS  PubMed  Google Scholar 

  23. Crosnier C, Driancourt C, Raynaud N, Dhorne-Pollet S, Pollet N, Bernard O, et al. Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology. 1999;116(5):1141–8.

    Article  CAS  PubMed  Google Scholar 

  24. Krantz ID, Colliton RP, Genin A, Rand EB, Li L, Piccoli DA, et al. Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families. Am J Hum Genet. 1998;62(6):1361–9. doi:10.1086/301875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McElhinney DB, Krantz ID, Bason L, Piccoli DA, Emerick KM, Spinner NB, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106(20):2567–74.

    Article  PubMed  Google Scholar 

  26. Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet. 2012;49(2):138–44. doi:10.1136/jmedgenet-2011-100544.

    Article  CAS  PubMed  Google Scholar 

  27. Dhorne-Pollet S, Deleuze JF, Hadchouel M, Bonaiti-Pellie C. Segregation analysis of Alagille syndrome. J Med Genet. 1994;31(6):453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elmslie FV, Vivian AJ, Gardiner H, Hall C, Mowat AP, Winter RM. Alagille syndrome: family studies. J Med Genet. 1995;32(4):264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shulman SA, Hyams JS, Gunta R, Greenstein RM, Cassidy SB. Arteriohepatic dysplasia (Alagille syndrome): extreme variability among affected family members. Am J Med Genet. 1984;19(2):325–32. doi:10.1002/ajmg.1320190215.

    Article  CAS  PubMed  Google Scholar 

  30. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29(3):822–9. doi:10.1002/hep.510290331.

    Article  CAS  PubMed  Google Scholar 

  31. Guegan K, Stals K, Day M, Turnpenny P, Ellard S. JAG1 mutations are found in approximately one third of patients presenting with only one or two clinical features of Alagille syndrome. Clin Genet. 2012;82(1):33–40. doi:10.1111/j.1399-0004.2011.01749.x.

    Article  CAS  PubMed  Google Scholar 

  32. Kamath BM, Munoz PS, Bab N, Baker A, Chen Z, Spinner NB, et al. A longitudinal study to identify laboratory predictors of liver disease outcome in Alagille syndrome. J Pediatr Gastroenterol Nutr. 2010;50(5):526–30. doi:10.1097/MPG.0b013e3181cea48d.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mouzaki M, Bass LM, Sokol RJ, Piccoli DA, Quammie C, Loomes KM, et al. Early life predictive markers of liver disease outcome in an international, multicentre cohort of children with Alagille syndrome. Liver Int. 2016;36(5):755–60. doi:10.1111/liv.12920.

    Article  PubMed  Google Scholar 

  34. Ryan MJ, Bales C, Nelson A, Gonzalez DM, Underkoffler L, Segalov M, et al. Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology. 2008;48(6):1989–97. doi:10.1002/hep.22538.

    Article  PubMed  Google Scholar 

  35. • Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N, Haltiwanger RS, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology. 2016;63(2):550–65. doi:10.1002/hep.28024. First description of a haploinsufficient mouse model of Jag1 that mimics human ALGS.

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, et al. Regulation of mammalian notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 2011;138(10):1925–34. doi:10.1242/dev.060020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilkie AO. The molecular basis of genetic dominance. J Med Genet. 1994;31(2):89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, et al. Embryonic lethality and vascular defects in mice lacking the notch ligand Jagged1. Hum Mol Genet. 1999;8(5):723–30.

    Article  CAS  PubMed  Google Scholar 

  39. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129(4):1075–82.

    CAS  PubMed  Google Scholar 

  40. Loomes KM, Russo P, Ryan M, Nelson A, Underkoffler L, Glover C, et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology. 2007;45(2):323–30.

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 2010;137(23):4061–72. doi:10.1242/dev.052118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geisler F, Strazzabosco M. Emerging roles of notch signaling in liver disease. Hepatology. 2015;61(1):382–92. doi:10.1002/hep.27268.

    Article  CAS  PubMed  Google Scholar 

  43. Huppert SS. A faithful JAGGED1 haploinsufficiency mouse model of arteriohepatic dysplasia (Alagille syndrome) after all. Hepatology. 2016;63(2):365–7. doi:10.1002/hep.28338.

    Article  PubMed  Google Scholar 

  44. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP, et al. Inhibition of jagged-mediated notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development. 2004;131(22):5753–66. doi:10.1242/dev.01411.

    Article  CAS  PubMed  Google Scholar 

  45. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312. doi:10.1016/j.cell.2014.11.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, et al. Conversion of terminally committed hepatocytes to Culturable Bipotent progenitor cells with regenerative capacity. Cell Stem Cell. 2017;20(1):41–55. doi:10.1016/j.stem.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30. doi:10.1038/nrd.2016.245.

    Article  CAS  PubMed  Google Scholar 

  49. • Ghanekar A, Kamath BM. Cholangiocytes derived from induced pluripotent stem cells for disease modeling. Curr Opin Gastroenterol. 2016;32(3):210–5. doi:10.1097/MOG.0000000000000260. Thorough review on recent iPSC culture models within the past 5 years.

    CAS  PubMed  Google Scholar 

  50. Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 2014;60(2):700–14. doi:10.1002/hep.27165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane MC, Huang BQ, Li Y, et al. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab Investig. 2015;95(10):1218. doi:10.1038/labinvest.2015.99.

    Article  CAS  PubMed  Google Scholar 

  52. • Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33(8):853–61. doi:10.1038/nbt.3294. Important work describing a Notch-dependent 3D culture system for deriving cholangiocytes from iPSCs.

    Article  CAS  PubMed  Google Scholar 

  53. Sampaziotis F. Cardoso de Brito M, madrigal P, Bertero a, Saeb-Parsy K, Soares FA et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015;33(8):845–52. doi:10.1038/nbt.3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andersson ER, Lendahl U. Therapeutic modulation of notch signalling--are we there yet? Nat Rev Drug Discov. 2014;13(5):357–78. doi:10.1038/nrd4252.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23(10):1163–71. doi:10.1038/cr.2013.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51. doi:10.1016/j.cell.2013.06.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10(10):977–9. doi:10.1038/nmeth.2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10(10):973–6. doi:10.1038/nmeth.2600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. doi:10.1126/science.1231143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015;4(4):569–77. doi:10.1016/j.stemcr.2015.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. doi:10.1016/j.cell.2013.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res. 2015;43(16):7850–64. doi:10.1093/nar/gkv682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holler CJ, Taylor G, McEachin ZT, Deng Q, Watkins WJ, Hudson K, et al. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Mol Neurodegener. 2016;11(1):46. doi:10.1186/s13024-016-0114-3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ellen Tsai, Kathy Loomes, Marcella Devoto, Ian Krantz, David Piccoli, and Binita Kamath for continued collaboration. We are grateful to the many people who have contributed to our understanding of the genetics of Alagille syndrome including Ian Krantz, Ray Colliton, Jennifer Morrissette, Dan Warthen, Ryan McDaniell, Rob Bauer, Laura Leonard, Christopher Grochowski, and Ramakrishnan Rajagopalan. Parts of this work were supported by R01DK081702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy B. Spinner.

Ethics declarations

Conflict of Interest

Nancy Spinner reports a patent issued for Human Jagged1 Polypeptide Encoding Nucleic Acids and Methods.

Melissa Gilbert declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Pathobiology of Orphan Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, M.A., Spinner, N.B. Alagille Syndrome: Genetics and Functional Models. Curr Pathobiol Rep 5, 233–241 (2017). https://doi.org/10.1007/s40139-017-0144-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0144-8

Keywords

Navigation