Skip to main content
Log in

Understanding the function and regulation of plant secondary metabolism through metabolomics approaches

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Plant secondary metabolism consists of highly complex pathways by the fact that its structures and levels are largely divergent between different tissues, growth stages, species and environmental conditions. The metabolomics of plant secondary metabolism has been developed for both functional genomics and analysis of physiological processes via multi-platform metabolite profiling as well as integration analysis with other omics data. Whilst recent efforts and significant technological advances of mass spectrometry have solved common analytical problems of metabolite detection at higher sensitivity, the challenge of improving (i) the coverage of detected compounds and (ii) peak annotation to enable functional genomics approach still persists. Here, we review progress made following this approach with research examples and strategies of gene functional analyses in plant species. Taken together, these examples prove that the current strategy of metabolomics focusing on plant secondary metabolism via integration with genetics and transcriptomics is a highly effective tool to understand the function and regulation of metabolic complexity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, Sasazaki Y, Watanabe M, Nakashita H, Fernie AR, Saito K, Takahashi H, Hubberten HM, Hoefgen R, Maruyama-Nakashita A (2016) Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci Adv 2:e1601087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41:875–887

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AM, De Vos RC, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. OMICS 6:217–234

    Article  CAS  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22(13):1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    Article  CAS  PubMed  Google Scholar 

  • Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, Kleessen S, Giavalisco P, Pleban T, Mueller-Roeber B, Zamir D, Nikoloski Z, Fernie AR (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. https://doi.org/10.1105/tpc.114.132266

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral MN, Souza GM (2017) The challenge to translate OMICS data to whole plant physiology: the context matters. Front Plant Sci 8:2146. https://doi.org/10.3389/fpls.2017.02146

    Article  PubMed  PubMed Central  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielecka M, Watanabe M, Morcuende R, Scheible WR, Hawkesford MJ, Hesse H, Hoefgen R (2015) Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis. Front Plant Sci 5:805

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunetti C, George RM, Tattini M, Field K, Davey MP (2013) Metabolomics in plant environmental physiology. J Exp Bot 64:4011–4020

    Article  CAS  PubMed  Google Scholar 

  • Caldana C, Degenkolbe T, CuadrosInostroza A, Klie S, Sulpice R, Leisse A et al (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67:869–884

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6(6):1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang W, Peng M, Gong L, Gao Y, Wan J, Wang S, Shi L, Zhou B, Li Z, Peng X, Yang C, Qu L, Liu X, Luo J (2016) Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat Commun 7:12767. https://doi.org/10.1038/ncomms12767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MP, Woodward FI, Quick WP (2009) Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics 5:138–149

    Article  CAS  Google Scholar 

  • Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Gao Y, Chen W, Wang W, Gong L, Liu X, Luo J (2015) Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Mol Plant 8(1):111–121

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago trunculata cell cultures. Plant Physiol 146:387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre EM, Tech S, Trethewey RN, Fernie AR, Willmitzer L (2006) Subcellular pyrphosphate metabolism in developing tubers of potato (Solanum tuberosum). Planta Mol Biol 62:165–179

    Article  CAS  Google Scholar 

  • Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108. https://doi.org/10.1111/j.1469-8137.2011.03890.x

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Schauer N (2008) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Stitt M (2012) On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions. Plant Physiol 158:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Tohge T (2017) The genetics of plant metabolism. Annu Rev Genet 52:287–310

    Article  CAS  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected component of functional genomics. Curr Opin Plant Biol 8:174–182

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V (2011) Recommendations for reporting metabolite data. Plant Cell 23:2477–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotype and phenotype. In: Town C (ed) Functional genomics. Springer, Dordrecht

    Google Scholar 

  • Fiehn O, Robertson D, Griffin J, Van Der Werf M, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon JC, Sansone SA (2007) The metabolomics standards initiative (MSI). Metabolomics 3(3):175–178

    Article  CAS  Google Scholar 

  • Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Moon S, Nikolau B (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53(4):691–704

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17(4):1252–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gago J, Fernie AR, Nikoloski Z, Tohge T, Martorell S, Escalona JM, Ribas-Carbó M, Flexas J, Medrano H (2017) Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard. Plant Methods 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J (2013) Genetic analysis oft he metabolome exemplified using a rice population. Proc Nat Acad Sci USA 110(50):20320–20325

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  CAS  PubMed  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomic strategies. Plant Cell 14:1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzle E, Matsuda F, Miyagawa H, Wakasa K, Nishioka T (2007) Estimation of metabollic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant J 50:176–187

    Article  CAS  PubMed  Google Scholar 

  • Hill CB, Taylor JD, Edwards J, Mather D, Langridge P, Bacic A, Roessner U (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104(15):6478–6483

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H, Wang J, Cui X, Rao J, Luo Q, Fernie AR, Zhang D (2014) Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 4:5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara H, Tohge T, Viehoever P, Fernie AR, Weisshaar B, Stracke R (2016) Natural variation in flavonol 3-O-gentiobioside 7-O-rhamnoside content in A. thaliana is determined by a glycoside hydrolase type flavonol glucosyltransferase BGLU6. J Exp Bot 67:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJB (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 12:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein D, Lambrix V, Reichelt M, Gershenzon J, Mitchell-Olds T (2001a) Gene duplication and the diversification of secondary metabolism: side chain modification of glucosinolates in Arabidopsis thaliana. Plant Cell 13:681–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001b) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger NJ, Ratcliffe RG (2009) Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie 91:697–702

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mosa KA, Ji L, Kage U, Dhokane D, Karre S, Madalageri D, Pathania N (2018) Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit Rev Food Sci Nutr 58:1791–1807

    Article  PubMed  Google Scholar 

  • Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P et al (2007) Application of a metabolomics method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B 855:71–79

    Article  CAS  Google Scholar 

  • Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 67:354–369. https://doi.org/10.1111/j.1365-313X.2011.04599.x

    Article  CAS  PubMed  Google Scholar 

  • Libourel IG, Shachar-Hill Y (2008) Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu Rev Plant Biol 59:625–650

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Shinbo Y, Oikawa A, Hirai MY, Fiehn O et al (2009a) Assessment of metabolome annotation quality: a method for evaluating the false discovery rate of elemental composition searches. PLoS ONE 4:e7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009b) MS/MS spectal tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577. https://doi.org/10.1111/j.1365-313X.2008.03705.x

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru JI, Ebana K, Yano M, Saito K (2012) Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J 70:624–636

    Article  CAS  PubMed  Google Scholar 

  • Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru JI, Ebana K, Yano M, Saito K (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13–23

    Article  CAS  PubMed  Google Scholar 

  • Miyagi A, Takahara K, Takahashi H, Kawai-Yamada M, Uchimiya H (2010) Targeted metabolomics in an intrusive weed, Rumex obtusifolius L., grown under different environmental conditions reveals alterations of organ related metabolite pathway. Metabolomics 6:497–510

    Article  CAS  Google Scholar 

  • Moreno-Risueno MA, Busch W, Benfey PN (2009) Omics meet networks—using systems approaches to infer regulatory networks in plants. Curr Opin Plant Biol 13:1–6

    Article  CAS  Google Scholar 

  • Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, Ralph J, Vanholme B, Boerjan W (2014) Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. Plant Cell. https://doi.org/10.1105/tpc.113.122242

    Article  PubMed  PubMed Central  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi M, Mimura T, Tsujimura T, Mitsuhashi N, Washitani-Nemoto S et al (2007) Inorganic phosphate uptake in intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don under varying Pi status. Planta 225:711–718

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1–15

    Article  PubMed  Google Scholar 

  • Owens BF, Lipka AE, Lundback MM, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Hernandez MM, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198(4):1699–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M, Shahzad R, Gul A, Subthain H, Shen S, Lei L, Zheng Z, Zhou J, Lu D, Wang S, Nishawy E, Liu X, Tohge T, Fernie AR, Luo J (2017) Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 8:1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez de Souza L, Naake T, Tohge T, Fernie AR (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web-resources for mass spectral plant metabolomics. Gigascience 6:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piasecka A, Sawikowska A, Kuczynska A, Ogrodowicz P, Mikolajczak K, Krystkowiak K, Gudys K, Guzy-Wrobelska J, Krajewski P, Kachlicki P (2017) Drought-related econdary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J 89:898–913. https://doi.org/10.1111/tpj.13430

    Article  CAS  PubMed  Google Scholar 

  • Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P (2018) A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172:358–372.e23

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Lisec J, Eysenberg AC, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Nat Acad Sci USA 109(23):8872–8877

    Article  PubMed  Google Scholar 

  • Roessner-Tunali U, Liu JL, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in (13)C labelled isotopes. Plant J 39(4):668–679

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, Arvidsson S, van der Merwe MJ, Riaño-Pachón DM, Mueller-Roeber B, Fei Z, Nesi AN, Giovannoni JJ, Fernie AR (2011) Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J 68(6):999–1013

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot 63(10):3749–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan D, Robards K (2006) Metabolomics: the greatest omics of them all? Anal Chem 78:7954–7958

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265. https://doi.org/10.1038/srep29265

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50(1):37–47. https://doi.org/10.1093/pcp/pcn183

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trend Plant Sci. https://doi.org/10.1016/j.tplants.2006.08.007

    Article  Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–849

    Article  CAS  PubMed  Google Scholar 

  • Schwahn K, Perez de Souza L, Fernie AR, Tohge T (2014) Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. J Integr Plant Biol 56:864–875

    Article  CAS  PubMed  Google Scholar 

  • Scossa F, Benina M, Alseekh S, Zhang Y, Fernie AR (2018) The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta Med 84:855–873

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Watanabe M, Fernie AR, Tohge T (2018) Targeted LC-MS analysis for plant secondary metabolites. Methods Mol Biol 1778:171–181

    Article  CAS  PubMed  Google Scholar 

  • Shimma S, Nagao H, Giannakopulos AE, Hayakawa S, Awazu K, Toyoda M (2008) High-energy collision-induced dissociation of phosphopeptides using a multi-turn tandem time-of-flight mass spectrometer ‘MULTUM-TOF/TOF’. J Mass Spectrom 43:535–537

    Article  CAS  PubMed  Google Scholar 

  • Shirai K, Matsuda F, Nakabayashi R, Okamoto M, Tanaka M, Fujimoto A, Shimizu M, Shinozaki K, Seki M, Saito K, Hanada K (2017) A highly specific genome-wide association study integrated with transcriptome data reveals the contribution of copy number variations to specialized metabolites in Arabidopsis thaliana accessions. Mol Biol Evol. https://doi.org/10.1093/molbev/msx234

    Article  PubMed  Google Scholar 

  • Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H et al (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353

    Article  PubMed  Google Scholar 

  • Sweetlove LJ, Fernie AR (2013) The spatial organization of metabolism within the plant cell. Annu Rev Plant Biol 64:723–746

    Article  CAS  PubMed  Google Scholar 

  • Swender J (2011) Experimental flux measurements on a network scale. Front Plant Sci 2:63

    Google Scholar 

  • Szecowka M, Heisse R, Tohge T, Nunes-Nesi A, Vorsloh D, Nikoloski Z, Stitt M, Fernie AR, Arrivault S (2013) Metabolic fluxes of an illuminated Arabidopsis thaliana rosette. Plant Cell 25:694–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, Fernie AR (2009) Web-based resources for mass-spectrometry-based metabolomics: a user’s guide. Phytochemistry 70:450–456

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Fernie AR (2010) Combining genetic diversity, informatics, and metabolomics to facilitate annotation of plant gene function. Nat Protoc 5:1210–1227

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Fernie AR (2014) Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions. Front Plant Sci 5:75. https://doi.org/10.3389/fpls.2014.00075

    Article  PubMed  PubMed Central  Google Scholar 

  • Tohge T, Fernie AR (2017) An Overview of compounds derived from the shikimate and phenylpropanoid pathways and their medicinal importance. Mini Rev Med Chem 17:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005a) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing a MYB transcription factor. Plant J 42:218–235

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima JI, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005b) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42(2):218–235

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79:811–823

    Article  CAS  Google Scholar 

  • Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 48:123–152

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Souza LP, Fernie AR (2014) Genome-enabled plant metabolomics. J Chromatogr B 966:7–20

    CAS  Google Scholar 

  • Tohge T, Scossa F, Fernie AR (2015) Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. Plant Physiol 169:1499–1511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, Wendenburg R, Ishihara H, Nakabayashi R, Watanabe M, Sulpice R, Hoefgen R, Takayama H, Saito K, Stitt M, Fernie AR (2016) Characterization of a recently-evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat Commun 7:12399. https://doi.org/10.1038/ncomms12399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, Borghi M, Fernie AR (2018) The natural variance of the Arabidopsis floral secondary metabolites. Sci Data 5:180051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udomsom N, Rai A, Suzuki H, Okuyama J, Imai R, Mori T, Nakabayashi R, Saito K, Yamazaki M (2016) Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics. Front Plant Sci 7:1861

    Article  PubMed  PubMed Central  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4(10):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veyel D, Kierszniowska S, Kosmacz M, Sokolowska EM, Michaelis A, Luzarowski M, Szlachetko J, Willmitzer L, Skirycz A (2017) System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants. Sci Rep 7:42387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Yin XR, Zhang B, Grierson D, Xu CJ, Chen KS (2017) Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. Plant Cell Environ 40:1531–1551

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Fernie AR, Mueller-Roeber B, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J, Yan J (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun 5:3484. https://doi.org/10.1038/ncomms4438

    Article  CAS  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233. https://doi.org/10.1007/BF00303957

    Article  CAS  Google Scholar 

  • Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A (2017) A global co-expression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell. https://doi.org/10.1105/tpc.17.00009

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Tohge T, Cuadros-Inostroza A, Tong H, Tenenboim H, Kooke R, Meret M, Keurentjes JB, Nikoloski Z, Fernie AR, Willmitzer L, Brotman Y (2018) Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol Plant 11:118–134. https://doi.org/10.1016/j.molp.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki M, Shibata M, Nishiyama Y, Springob K, Kitayama M, Shimada N, Aoki T, Ayabe S, Saito K (2008) Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J 275:3494–3502

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:14932–14941

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support of the Nara Institute of Science and Technology (NAIST) and Japanese Government (MEXT) scholarships for JCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Tohge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delfin, J.C., Watanabe, M. & Tohge, T. Understanding the function and regulation of plant secondary metabolism through metabolomics approaches. Theor. Exp. Plant Physiol. 31, 127–138 (2019). https://doi.org/10.1007/s40626-018-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0126-1

Keywords

Navigation