Skip to main content
Log in

The loop of formal power series with noncommutative coefficients under substitution

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The set of formal power series with coefficients in an associative but noncommutative algebra becomes a loop with the substitution product. We study this loop by describing certain Lie and Sabinin algebras related to it. Some examples of Lie algebras satisfying the standard identities of degrees 5 and 6 appear naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We identify the formal power series \(t + \alpha _1 t^2 + \alpha _2 t^3 + \cdots \in t + S_1 t^2 + S_2 t^3 + \cdots \) with \(1 + \alpha _1 + \alpha _2 + \cdots \).

References

  1. Akivis, M.A., Goldberg, V.V.: Local algebras of a differential quasigroup. Bull. Am. Math. Soc. (N.S.) 43(2), 207–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babenko, I.K.: Algebra, geometry and topology of the substitution group of formal power series. Uspekhi Mat. Nauk 68(1(409)), 3–76 (2013). (Russian, with Russian summary); English transl., Russian Math. Surveys 68 (2013) no 1, 1–68)

    Article  MathSciNet  Google Scholar 

  3. Bergman, G.: The Lie algebra of vector fields in \(\mathbb{R}^{n}\) satisfies polynomials identities. https://math.berkeley.edu/~gbergman/papers/unpub/Lie_PI.pdf

  4. Bogataya, S.I., Bogatyi, S.A., Kiselev, D.D.: Powers of elements of the series substitution group \(\cal{J}(Z_2)\). Topol. Appl. 201, 29–56 (2016)

    Article  MATH  Google Scholar 

  5. Brouder, C., Frabetti, A., Krattenthaler, C.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200(2), 479–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruck, R.H.: A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20. Reihe: Gruppentheorie. Springer, Berlin (1958)

    Google Scholar 

  7. Camina, R.: Subgroups of the Nottingham group. J. Algebra 196(1), 101–113 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Camina, R.: The Nottingham Group, New Horizons in Pro-\(p\) Groups, Progress in Mathematics, vol. 184, pp. 205–221. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  9. Frabetti, A., Shestakov, I.P.: Loop of formal diffeomorphisms and Fa di Bruno coloop bialgebra. arXiv:1807.10477

  10. Hofmann, K.H.: Topologische loops. Math. Z. 70, 13–37 (1958). (German)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hofmann, K.H., Strambach, K.: Lie’s fundamental theorems for local analytical loops. Pac. J. Math. 123(2), 301–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hofmann, K.H., Strambach, K.: Topological and Analytic Loops, Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Mathematics, vol. 8. Heldermann, Berlin (1990)

    MATH  Google Scholar 

  13. Jennings, S.A.: Substitution groups of formal power series. Can. J. Math. 6, 325–340 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, D.L.: The group of formal power series under substitution. J. Aust. Math. Soc. Ser. A 45(3), 296–302 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kerdman, F.S.: Analytic Moufang loops in the large. Algebra i Logika 18(5), 523–555 (1979). 632, (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kikkawa, M.: On local loops in affine manifolds. J. Sci. Hiroshima Univ. Ser. A I Math. 28, 199–207 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirillov, A.A., Ovsienko, V.Y., Udalova, O.D.: Identities in the Lie algebra of vector fields on the real line [translation of Akad. Nauk SSSR Inst. Prikl. Mat. Preprint 1984, no. 135]. Selecta Math. Soviet. 10(1), 7–17 (1991). (Selected translations)

    MathSciNet  Google Scholar 

  18. Klopsch, B.: Normal subgroups in substitution groups of formal power series. J. Algebra 228(1), 91–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuzmin, E.N.: The connection between Mal’cev algebras and analytic Moufang loops. Algebra i Logika 10, 3–22 (1971). (Russian)

    MathSciNet  Google Scholar 

  20. Mal’cev, A.I.: Analytic loops. Mat. Sb. N.S. 36(78), 569–576 (1955). (Russian)

    MathSciNet  Google Scholar 

  21. Mikheev, P.O., Sabinin, L.V.: Analytic Bol Loops, Webs and Quasigroups, pp. 102–109. Kalinin. Gos. Univ., Kalinin (1982). (Russian)

    Google Scholar 

  22. Mikheev, P.O., Sabinin, L.V.: Infinitesimal theory of local analytic loops. Dokl. Akad. Nauk SSSR 297(4), 801–804 (1987). (Russian) (English transl., Soviet Math. Dokl., 36 (1988) no. 3, 545–548)

    Google Scholar 

  23. Mostovoy, J.: The Notion of Lower Central Series for Loops, Non-Associative Algebra and Its Applications, Lecture Notes in Pure and Applied Mathematics, vol. 246, pp. 291–298. Chapman & Hall/CRC, Boca Raton (2006)

    Book  MATH  Google Scholar 

  24. Mostovoy, J.: Nilpotency and dimension series for loops. Commun. Algebra 36(4), 1565–1579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mostovoy, J., Pérez-Izquierdo, J.M.: Dimension filtration on loops. Isr. J. Math. 158, 105–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mostovoy, J., Pérez-Izquierdo, J.M.: Formal multiplications, bialgebras of distributions and nonassociative Lie theory. Transform. Groups 15(3), 625–653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nagy, P.T., Strambach, K.: Loops in Group Theory and Lie Theory, De Gruyter Expositions in Mathematics, vol. 35. Walter de Gruyter & Co., Berlin (2002)

    Book  Google Scholar 

  28. Pflugfelder, H.O.: Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, vol. 7. Heldermann Verlag, Berlin (1990)

    MATH  Google Scholar 

  29. Pogudin, G., Razmyslov, Y.P.: Prime Lie algebras satisfying the standard Lie identity of degree 5. J. Algebra 468, 182–192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Poinsot, L.: The solution to the embedding problem of a (differential) Lie algebra into its Wronskian envelope. Commun. Algebra 46, 1641–1667 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Razmyslov, Y.P.: Simple Lie algebras that satisfy the standard Lie identity of degree 5. Izv. Akad. Nauk SSSR Ser. Mat. 49(3), 592–634 (1985). (Russian)

    MathSciNet  MATH  Google Scholar 

  32. Sabinin, L.V.: Smooth Quasigroups and Loops, Mathematics and Its Applications, vol. 492. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  33. Sabinin, L.V.: Smooth quasigroups and loops: forty-five years of incredible growth. Comment. Math. Univ. Carolin. 41(2), 377–400 (2000). Loops’99 (Prague)

    MathSciNet  MATH  Google Scholar 

  34. Shestakov, I.P., Umirbaev, U.U.: Free Akivis algebras, primitive elements, and hyperalgebras. J. Algebra 250(2), 533–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. York, I.O.: Group of Formal Power Series, Ph.D. thesis, Nottingham University (1990)

Download references

Acknowledgements

I would like to thank the referee for detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Pérez-Izquierdo.

Additional information

Dedicated with admiration, respect and affection to Ivan Shestakov on the occasion of his 70th birthday. Thanks for making your home our mathematical home.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: One-sided local loops

Appendix: One-sided local loops

We observe that the formula \(\alpha _m * \beta _n := (m+1) \alpha _m \beta _n\) has not right unit element in case we assume that 1 is of degree 0, which leads to a left loop rather than a two-sided loop.

In this section we would like to briefly discuss how to adapt the approach of Mikheev and Sabinin to the study of one-side local loops. Let \((Q,x*y,e)\) be a right (local) loop, i.e. e is the right unit element and the Jacobian of the left and right multiplication operators at e is non-zero, and define a two-sided loop by

$$\begin{aligned} xy = x*(L^{*}_e)^{-1}y. \end{aligned}$$

This loop is classified by its Sabinin algebra \((T_e Q, \langle - ; -,- \rangle , \varPhi (-;-))\). Thus, if we include a new family of totally symmetric multilinear operation, lets say \([x_1,\ldots , x_n]\) (\(n \ge 1\)), corresponding to the Taylor series of the map \(L^{*}_e\) in normal coordinates to classify \(L^{*}_e\) (see [22]), then the algebraic structure

$$\begin{aligned} (T_e Q, \langle - ; -,- \rangle , \varPhi (-;-),[-]) \end{aligned}$$
(26)

classifies the right local loop \((Q,x*y,e)\). The integration of these structures to left loops only requires the usual convergence conditions (see [22]).

From a geometrical point of view, given a right loop we define the parallel transport as

$$\begin{aligned} \tau ^e_y := dL^*_y(L^*_e)^{-1}\vert _e. \end{aligned}$$

so that

$$\begin{aligned} \tau ^x_y := (dL^*_y\vert e) (dL^*_x\vert _e)^{-1}. \end{aligned}$$

This parallel transport defines a right monoalternative geodesic loop \(x \times y := \exp _x \tau ^e_x \exp ^{-1}_e(y)\). For this loop we have

$$\begin{aligned} dL^{\times }_y\vert _e = \tau ^e_y = dL^*_y(L^*_e)^{-1}\vert _e. \end{aligned}$$

We can consider the map \(\varPsi _x\) defined by \(x*y = x \times \varPsi _x(y)\). The only restrictions on \(\varPsi \) are

$$\begin{aligned} \varPsi _x(e) = e, \quad \varPsi _e(y) = e*y \quad \text {and} \quad d\varPsi _x\vert _e = dL^*_e\vert _e. \end{aligned}$$

and \((Q,*)\) is classified by \(x \times y\) and \(\varPsi _x\). Thus, to locally classify \(x*y\), we need the same structure as in (26) since we require \(\langle - ; -,- \rangle \) to recover \(x \times y\); the operations \([-]\) that encode the coefficients of the Taylor expansion in normal coordinates for \(L^*_e\) to classify \(\varPsi _e\); and, to recover \(\varPsi _x\), we need \(\varPhi (-;-)\) that collects the coefficients of the Taylor expansion of \(\varPsi _x(y)\) on degrees \(\ge 1\) and \(\ge 2\) of x and y respectively (notice that the coefficients of monomials in the Taylor expansion of \(\varPsi _x(y)\) of degree 0 on the coordinates of x and of degree \(\ge 1\) on the coordinates of y are determined by \(\varPsi _e = L^*_e\), and those of degree \(\ge 1\) on the coordinates of x and of degree 0 or 1 on the coordinates of y are determined by \(d\varPsi _x\vert _e = dL^*_e\vert _e\)).

In fact, if we define \(\varPhi '_x:=\varPsi _x(L^*_e)^{-1}\) then \(xy = x *(L^{*}_e)^{-1}y = x \times \varPhi '_x(y)\) with

$$\begin{aligned} \varPhi '_x(e) = e, \quad \varPhi '_e(y) = y \quad \text {and} \quad d\varPhi '_x\vert _e = \mathrm {Id}. \end{aligned}$$

This proves that the loop \(x \times y\) is also the monoalternative perturbation of the loop xy and that \(\varPsi \) is recovered with the help of \(\varPhi \) and \(L^*_e\). Moreover, if the right local loop \((Q,*)\) is right monoalternative then xy is a monoalternative loop. Thus \(xy = x \times y\) and \(x \times y = x* (L^{*}_e)^{-1}(y)\).

Therefore, the classification of local one-sided loops only requires the usual structure of a Sabinin algebra and an extra family of totally symmetric multilinear operations \([x_1,\ldots , x_n]\) (\(n\ge 1\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Izquierdo, J.M. The loop of formal power series with noncommutative coefficients under substitution. São Paulo J. Math. Sci. 13, 133–157 (2019). https://doi.org/10.1007/s40863-019-00131-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00131-w

Keywords

Mathematics Subject Classification

Navigation