Skip to main content
Log in

Soda lignin from Citrus sinensis bagasse: extraction, NMR characterization and application in bio-based synthesis of silver nanoparticles

  • Original Research Article
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

Lignin is one of the most abundant natural materials with many important roles, especially in providing structural resilience of plants. It is formed through the radical polymerization of aromatic monomers and shows structural and compositional differences depending on sources, biosynthesis and processes used for its extraction. Herein, we present extraction of lignin from the Citrus sinensis (sweet orange) bagasse using full sequential extraction in a yield of 0.34% and report on the soda lignin nuclear magnetic resonance (NMR) properties (1H NMR and 2D NMR). The soda lignin was then applied in the sustainable synthesis of silver nanoparticles (AgNPs). The obtained silver nanoparticles showed unimodal distribution of sizes, spherical morphology, average diameters of 19.1 ± 4.7 nm and negative zeta potentials of − 28.5 ± 3.2 mV. The AgNPs were also found to be stable over several months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Dewick (2002)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeyemi OS, Sulaiman F (2015) Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 29:145–149

    Google Scholar 

  • Ahmed S, Ahmad M, Swami B, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  Google Scholar 

  • Aravantinos-Zafiris G, Oreopoulou V, Tzia C, Thomopoulos CD (1994) Fibre fraction from orange peel residues after pectin extraction. Food Sci Technol 27:468–471

    Google Scholar 

  • Azadi P, Inderwildi O, Farnood R, King D (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  Google Scholar 

  • Ballottin D, Fulaz S, Souza M et al (2016) Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett 11:313–322

    Article  Google Scholar 

  • Ballottin D, Fulaz S, Cabrini F et al (2017) Antimicrobial textiles: biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng C Mater Biol Appl 75:582–589

    Article  Google Scholar 

  • Constant S, Wienk HLJ, Frissen AE et al (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem 18:2651–2665

    Article  Google Scholar 

  • Das V, Thomas R, Varghese R et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4:121–126

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, NewYork

    Google Scholar 

  • Durán N, Durán M, Jesus M et al (2016a) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine NBM 12:789–799

    Article  Google Scholar 

  • Durán N, Nakazato G, Seabra AB (2016b) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570

    Article  Google Scholar 

  • Durán N, Durán M, Souza C (2017) Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. J Braz Chem Soc 28:927–932

    Google Scholar 

  • Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96

    Article  Google Scholar 

  • El Mansouri N, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24:8–16

    Article  Google Scholar 

  • Hu S, Hsieh Y (2015) Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr Polym 131:134–141

    Article  Google Scholar 

  • Hu S, Hsieh Y (2016) Silver nanoparticle synthesis using lignin as reducing and capping agents: a kinetic and mechanistic study. Int J Biol Macromol 82:856–862

    Article  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  Google Scholar 

  • Li S, Lundquist K (1994) A new method for the analysis of phenolic groups in lignins by 1H NMR spectroscopy. Nord Pulp Pap Res J 9:191–195

    Article  Google Scholar 

  • Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589

    Article  Google Scholar 

  • Marin S, Vlăsceanu G, Ţiplea RA et al (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604

    Article  Google Scholar 

  • Menezes F, Fernandes R, Rocha G, Filho R (2016) Physicochemical characterization of residue from the enzymatic hydrolysis of sugarcane bagasse in a cellulosic ethanol process at pilot scale. Ind Crops Prod 94:463–470

    Article  Google Scholar 

  • Mousavioun P, Doherty W (2010) Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crops Prod 31:52–58

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  Google Scholar 

  • Sharma V, Yngard R, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  Google Scholar 

  • Shen Z, Luo Y, Wang Q et al (2014) High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. Appl Mater Interfaces 6:16147–16155

    Article  Google Scholar 

  • Thakur V, Thakur M, Raghavan P, Kessler M (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  Google Scholar 

  • Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicellulose, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98:296–301

    Article  Google Scholar 

  • Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32

    Article  Google Scholar 

  • Wen J, Sun S, Xue B, Sun R (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391

    Article  Google Scholar 

  • Yola M, Gupta V, Eren T et al (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  Google Scholar 

  • Zeng J, Helms G, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61:10848–10857

Download references

Acknowledgements

The authors would like to acknowledge the fundings provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp—2015/12534-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. We also thank Mr. Douglas Soares da Silva for conducting TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Tasic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, C.H.N., Stanisic, D., Morais, B.F. et al. Soda lignin from Citrus sinensis bagasse: extraction, NMR characterization and application in bio-based synthesis of silver nanoparticles. Energ. Ecol. Environ. 3, 87–94 (2018). https://doi.org/10.1007/s40974-017-0078-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-017-0078-3

Keywords

Navigation