Skip to main content
Log in

On the Free Vibrations of Piezoelectric Carbon Nanotube-Reinforced Microbeams: A Multiscale Finite Element Approach

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this article, the vibrational behavior of beam-type microstructures made of carbon nanotube-reinforced composite is studied based on a finite element approach accounting for micro-/nanoscale effects. It is considered that the surface of microbeams is perfectly bonded with a piezoelectric actuator layer. First, the random distribution of CNTs into the polymer matrix is modeled using a three-phase representative volume element (RVE), and the properties of CNT-reinforced polymer are determined for various volume fractions of CNT. In the selected RVE, the interphase region formed due to the interaction between CNTs and the matrix is taken into account. In the next step, natural frequencies of composite piezoelectric microbeams subject to different end conditions are calculated. The influences of CNT volume fraction, interphase, boundary conditions and geometrical properties on the results are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansari R, Hassanzadeh Aghdam MK (2016) Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading. Compos Part B Eng 90:512–522

    Article  Google Scholar 

  • Ansari R, Rouhi H, Sahmani S (2011a) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53:786–792

    Article  Google Scholar 

  • Ansari R, Rouhi H, Sahmani S (2011b) Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model. Physica E 44:373–378

    Article  Google Scholar 

  • Ansari R, Gholami R, Rouhi H (2012) Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos Part B Eng 43:2985–2989

    Article  Google Scholar 

  • Ansari R, Shahabodini A, Rouhi H, Alipour A (2013a) Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials. J Therm Stress 36:56–70

    Article  Google Scholar 

  • Ansari R, Shahabodini A, Rouhi H (2013b) A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos Struct 100:323–331

    Article  Google Scholar 

  • Ansari R, Rouhi H, Mirnezhad M (2014a) A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes. Curr Appl Phys 14:1360–1368

    Article  Google Scholar 

  • Ansari R, Rouhi H, Sahmani S (2014b) Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models. J Vib Control 20:670–678

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Faghih Shojaei M, Mohammadi V, Gholami R, Sadeghi F (2014c) Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos Struct 113:316–327

    Article  Google Scholar 

  • Ansari R, Mirnezhad M, Rouhi H (2015) Torsional buckling analysis of chiral multi-walled carbon nanotubes based on an accurate molecular mechanics model. Acta Mech 226:2955–2972

    Article  MathSciNet  MATH  Google Scholar 

  • Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479

    Article  Google Scholar 

  • Bellucci S (2005) Carbon nanotubes: physics and applications. Phys Status Solidi (c) 2:34–47

    Article  Google Scholar 

  • Chalioris CE, Karayannis CG, Angeli GM, Papadopoulos NA, Favvata MJ, Providakis CP (2016) Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to structures: tests in RC elements. Case Stud Constr Mater 5:1–18

    Google Scholar 

  • Charlier JC, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732

    Article  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  • Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178

    Article  Google Scholar 

  • Dinçkal Ç (2016) Free vibration analysis of carbon nanotubes by using finite element method. Iran J Sci Technol Trans Mech Eng 40:43–55

    Article  Google Scholar 

  • Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    Article  Google Scholar 

  • Ghorbanpour Arani A, Haghparast E, Heidari Rarani M, Khoddami Maraghi Z (2015) Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid. Comput Mater Sci 96:448–458

    Article  Google Scholar 

  • Ghorbanpour Arani A, Mosayyebi M, Kolahdouzan F, Jamali M (2016) Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers. Proc IMechE Part G J Aerosp Eng. https://doi.org/10.1177/0954410016667150

    Google Scholar 

  • Giannopoulos GI, Georgantzinos SK, Anifantis NK (2010) A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites. Compos Part B Eng 41:594–601

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Ke LL, Yang J, Kitipornchai S (2010) nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683

    Article  Google Scholar 

  • Ke LL, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech Adv Mater Struct 20:28–37

    Article  Google Scholar 

  • Legoas SB, Coluci VR, Braga SF, Coura PZ, Dantas SO, Galvão DS (2004) Gigahertz nanomechanical oscillators based on carbon nanotubes. Nanotechnology 15:S184

    Article  Google Scholar 

  • Lei ZX, Zhang LW, Liew KM (2016) Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. Compos Part B Eng 90:251–266

    Article  Google Scholar 

  • Li K, Gao XL, Roy AK (2006) Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech Adv Mater Struct 13:317–328

    Article  Google Scholar 

  • Mehar K, Panda SK, Dehengia A, Kar VR (2016) Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment. J Sandw Struct Mater 18:151–173

    Article  Google Scholar 

  • Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562

    Article  Google Scholar 

  • Paradise M, Goswami T (2007) Carbon nanotubes: production and industrial applications. Mater Des 28:1477–1489

    Article  Google Scholar 

  • Phung-Van P, Lieu QX, Nguyen-Xuan H, Abdel Wahab M (2017) Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Compos Struct 166:120–135

    Article  Google Scholar 

  • Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  • Quakad M, Sedighi HM (2016) Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators. Int J Non-Linear Mech 87:97–108

    Article  Google Scholar 

  • Rezaei MP, Zamanian M (2017) A two-dimensional vibration analysis of piezoelectrically actuated microbeam with nonideal boundary conditions. Physica E 85:285–293

    Article  Google Scholar 

  • Rokni H, Milani AS, Seethaler RJ (2015) Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer microcantilevers: modeling and optimization. Eur J Mech A/Solids 49:26–34

    Article  MathSciNet  MATH  Google Scholar 

  • Selmi A, Friebel C, Doghri I, Hassis H (2007) Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models. Compos Sci Technol 67:2071–2084

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Compos Mater 46:155–172

    Article  Google Scholar 

  • Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 26:145–249

    Article  Google Scholar 

  • Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292:2462–2465

    Article  Google Scholar 

  • Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos Part B 41:106–115

    Article  Google Scholar 

  • Uchino K (ed) (2017) Advanced piezoelectric materials, 2nd edn. Science and Technology. Paperback ISBN: 9780081012543. Imprint: Woodhead Publishing. Published date: 1st July 2017

  • Wan H, Delale F, Shen L (2005) Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites. Mech Res Commun 32:481–489

    Article  MATH  Google Scholar 

  • Yang WD, Wang X (2016) Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int J Mech Sci 107:34–42

    Article  Google Scholar 

  • Yang WD, Yang FP, Wang X (2016) Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sens Actuators A Phys 248:10–21

    Article  Google Scholar 

  • Yang WD, Fang CQ, Wang X (2017) Nonlinear dynamic characteristics of FGCNTs reinforced microbeam with piezoelectric layer based on unifying stress-strain gradient framework. Compos Part B 111:372–386

    Article  Google Scholar 

  • Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  • Zare J, Shateri A (2017) Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy. Physica E 90:67–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Ansari, R. & Rouhi, H. On the Free Vibrations of Piezoelectric Carbon Nanotube-Reinforced Microbeams: A Multiscale Finite Element Approach. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 285–294 (2019). https://doi.org/10.1007/s40997-018-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0157-x

Keywords

Navigation