Skip to main content
Log in

Spatial resolution optimization in a THGEM-based UV photon detector

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

THick Gas Electron Multiplier (THGEM) is considered in many UV photon detector applications. It has the capability of detecting single photon and imaging with high sensitivity. Operating parameters such as choice of gas mixture, pressure, drift field, drift gap, multiplication voltage, induction field and induction gap play an important role in deciding the spatial resolution of the detector. Detailed simulation study enables to optimize the above-mentioned parameters for a given THGEM-based imaging detector and hence to achieve improved performance for the same.

Materials and methods

Simulation, using ANSYS and Garfield++, starts with the release of primary electrons at random coordinates on the photocathode plane. They are tracked as they pass through the drift gap and THGEM hole till the electron cloud reaches anode plane. Distribution of electron cloud on the anode plane along X and Y axis is plotted in histogram and fitted with Gaussian function to determine spatial resolution. Ar/CO2 (70:30) mixture, which shows higher ETE and lower transverse diffusion, is chosen for this simulation study.

Conclusion

Transverse diffusion has a major impact on both ETE and the spatial resolution. Lower transverse diffusion coefficient is always desired for having better resolution as well as for ETE. It is found from the simulation study that higher gas pressure, lower drift field and induction field, smaller drift and induction gap can provide optimum detection efficiency with the best spatial resolution. The simulation method proposed here can also be extended to X-ray imaging detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Sauli, Nucl. Instrum. Methods Phys. Res. A 477(1), 1–7 (2002)

    Article  ADS  Google Scholar 

  2. R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 535(1), 303–308 (2004)

    Article  ADS  Google Scholar 

  3. A.F. Buzulutskov, Instrum. Exper. Tech. 50(3), 287–310 (2007)

    Article  Google Scholar 

  4. M. Cortesi et al., J. Instrum. 8(10), C10009 (2013)

    Article  Google Scholar 

  5. F. Sauli, Nucl. Instrum. Methods Phys. Res. A 386(2–3), 531–534 (1997)

    Article  ADS  Google Scholar 

  6. F. Tessarotto, Evolution and recent developments of the gaseous photon detectors technologies. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2017). https://doi.org/10.1016/j.nima.2017.11.081

  7. R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 553(1), 35–40 (2005)

    Article  ADS  Google Scholar 

  8. M. Alexeev et al., Nucl. Instrum. Methods Phys. Res. A 732, 264–268 (2013)

    Article  ADS  Google Scholar 

  9. R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 595(1), 116–127 (2008)

    Article  ADS  Google Scholar 

  10. A. Di Mauro, Nucl. Instrum. Methods Phys. Res. A 766, 126–132 (2014)

    Article  ADS  Google Scholar 

  11. C. Shalem et al., Nucl. Instrum. Methods Phys. Res. A 558(2), 475–489 (2006)

    Article  ADS  Google Scholar 

  12. J.M. Maia et al., Nucl. Instrum. Methods Phys. Res. A 580(1), 373–376 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Bamberger et al., Nucl. Instrum. Methods Phys. Res. A 572(1), 157–159 (2007)

    Article  ADS  Google Scholar 

  14. M. Cortesi et al., J. Instrum. 2(09), P09002 (2007)

    Article  Google Scholar 

  15. V.N. Kudryavtsev et al., Nucl. Instrum. Methods Phys. Res. A 845, 289–292 (2017)

    Article  ADS  Google Scholar 

  16. Y. Lan-Lan et al., arXiv preprint arXiv:1306.0270 (2013)

  17. H. Zhao et al., Radiat. Detect. Technol Methods 1(1), 6 (2017)

    Article  Google Scholar 

  18. Ansys, https://www.ansys.com

  19. G. Baishali et al., Nucl. Instrum. Methods Phys. Res. A 729, 51–57 (2013)

    Article  ADS  Google Scholar 

  20. http://garfieldpp.web.cern.ch/garfieldpp/. Accessed Mar 2016

  21. C.D.R. Azevedo et al., J. Instrum. 11(08), P08018 (2016)

    Article  Google Scholar 

  22. L. Moleri et al., On the localization properties of an RPWELL gas-avalanche detector. J Instrum 12(10), P10017 (2017)

    Article  Google Scholar 

  23. Y. Assran, A. Sharma, arXiv preprint arXiv:1110.6761 (2011)

  24. A. Breskin, Nucl. Instrum. Methods Phys. Res. A 367(1-3), 326–331 (1995)

    Article  ADS  Google Scholar 

  25. A. Breskin et al., Nucl. Instrum. Methods Phys. Res. A 478(1–2), 225–229 (2002)

    Article  ADS  Google Scholar 

  26. C. Shalem, M.Sc. thesis, Weizmann Institute of Science. http://jinst.sissa.it/jinst/theses/2005_JINST_TH_001.pdfS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P., Baishali, G., Radhakrishna, V. et al. Spatial resolution optimization in a THGEM-based UV photon detector. Radiat Detect Technol Methods 2, 39 (2018). https://doi.org/10.1007/s41605-018-0070-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0070-2

Keywords

Navigation