Skip to main content

Advertisement

Log in

Construction of Electrospun Organic/Inorganic Hybrid Nanofibers for Drug Delivery and Tissue Engineering Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Electrospun nanofibers hold a great potential in biomedical applications due to their advantages of large specific surface area, good biocompatibility, easy fabrication and surface modification. In particular, organic/inorganic hybrid nanofibers exhibit enhanced mechanical properties and long-term sustained release or controlled release profile of encapsulated drugs, which enables hybrid nanofibers to serve as desired platform for drug delivery and tissue engineering applications. This review summarizes the recent progresses in the preparation, performances and applications of hybrid nanofibers as drug delivery vectors for antibacterial and antitumor therapy, and as nanofibrous scaffolds for bone tissue engineering or other types of tissue engineering applications. Nanofibers doped with various types of inorganic nanoparticles (e.g., halloysite, laponite®, nano-hydroxyapatite, attapulgite, carbon nanotubes, and graphene, etc.) are introduced and summarized in detail. Future perspectives are also briefly discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jordan A, Viswanath V, Kim S, Pokorski J, Korley L. Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B. 2016;4:5958.

    Article  Google Scholar 

  2. Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev. 2016;45:1225.

    Article  Google Scholar 

  3. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    Article  Google Scholar 

  4. Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal S, Zhang F, Huang C. electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng. 2017;302:1600353.

    Article  Google Scholar 

  5. Han D, Gouma P. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine. 2006;2:37.

    Article  Google Scholar 

  6. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 1976;2017:50.

    Google Scholar 

  7. Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi V, Limh K, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44:790.

    Article  Google Scholar 

  8. Goyal R, Macri L, Kaplan H, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J. Control Release. 2016;240:77.

    Article  Google Scholar 

  9. Hassiba A, El Zowalaty M, Nasrallah G, Webster T, Luyt A, Abdullah A, Elzatahry A. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine. 2016;11:715.

    Article  Google Scholar 

  10. Liu M, Duan X, Li Y, Yang D, Long Y. Electrospun nanofibers for wound healing. Mater Sci Eng C. 2017;76:1413.

    Article  Google Scholar 

  11. Li H, Williams G, Wu J, Lv Y, Sun X, Wu H, Zhu L. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm. 2017;517:135.

    Article  Google Scholar 

  12. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim H. Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng B. 2017;217:36.

    Article  Google Scholar 

  13. Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4:922.

    Article  Google Scholar 

  14. Chen S, Boda S, Batra S, Li X, Xie J. Emerging roles of electrospun nanofibers in cancer research. Adv Healthcare Mater. 2018;7:e1701024.

    Article  Google Scholar 

  15. Chou S, Carson D, Woodrow K. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584.

    Article  Google Scholar 

  16. Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28:1227.

    Article  Google Scholar 

  17. Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, Lvov Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci. 2018;35:42.

    Article  Google Scholar 

  18. Massaro M, Lazzara G, Milioto S, Noto R, Riela S. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B. 2017;5:4246.

    Article  Google Scholar 

  19. Podyacheva O, Cherepanova S, Romanenko A, Kibis L, Svintsitskiy D, Boronin A, Stonkus O, Suboch A, Puzynin A, Ismagilov Z. Nitrogen doped carbon nanotubes and nanofibers: composition, structure, electrical conductivity and capacity Properties. Carbon. 2017;122:475.

    Article  Google Scholar 

  20. Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L. Massive radius-dependent flow slippage in carbon nanotubes. Nature. 2016;537:210.

    Article  Google Scholar 

  21. Komsa H, Senga R, Suenaga K, Krasheninnikov A. Structural distortions and charge density waves in iodine chains encapsulated inside carbon nanotubes. Nano Lett. 2017;17:3694.

    Article  Google Scholar 

  22. Georgakilas V, Tiwari J, Kemp KC, Perman J, Bourlinos A, Kim K, Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116:5464.

    Article  Google Scholar 

  23. Cheng C, Li S, Thomas A, Kotov N, Haag R. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev. 1826;2017:117.

    Google Scholar 

  24. Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. 2016;133:42883.

    Article  Google Scholar 

  25. Kim H, Jung G, Yoon J, Han J, Park Y, Kim D, Zhang M, Kim D. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;54:20.

    Article  Google Scholar 

  26. Ramesh N, Moratti S, Dias G. Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res Part B. 2018;106:2046.

    Article  Google Scholar 

  27. Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf B. 2018;172:90.

    Article  Google Scholar 

  28. Mousa M, Evans N, Oreffo R, Dawson J. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;159:204.

    Article  Google Scholar 

  29. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock Copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548.

    Article  Google Scholar 

  30. Song N, Yang Y. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem Soc Rev. 2015;44:3474.

    Article  Google Scholar 

  31. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart M, Medintz I, Stratakis E, Parak WJ, Kanaras AG. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119:4819.

    Article  Google Scholar 

  32. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401.

    Article  Google Scholar 

  33. Dai Y, Liu W, Formo E, Sun Y, Xia Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol. 2011;22:326.

    Article  Google Scholar 

  34. Ding Y, Hou H, Zhao Y, Zhu Z, Fong H. Electrospun polyimide nanofibers and their applications. Prog Polym Sci. 2016;61:67.

    Article  Google Scholar 

  35. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602.

    Article  Google Scholar 

  36. Yim EKF, Leong KW. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine. 2005;1:10.

    Article  Google Scholar 

  37. Barakat N, Abadir M, Sheikh F, Kanjwal M, Park S, Kim H. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J. 2010;156:487.

    Article  Google Scholar 

  38. Liu F, Guo R, Shen M, Wang S, Shi X. Effect of processing variables on the morphology of electrospun poly (lactic acid)-co-(glycolic acid) nanofibers. Macromol Mater Eng. 2009;294:666.

    Article  Google Scholar 

  39. Liu F, Guo R, Shen M, Cao X, Mo X, Wang S, Shi X. Effect of the porous microstructures of poly(lactic-co-glycolic acid)/carbon nanotube composites on the growth of fibroblast cells. Soft Mater. 2010;8:239.

    Article  Google Scholar 

  40. Zhao Y, Wang S, Guo Q, Shen M, Shi X. Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci. 2013;127:4825.

    Article  Google Scholar 

  41. Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf B. 2011;84:528.

    Article  Google Scholar 

  42. Qi R, Tian X, Guo R, Luo Y, Shen M, Yu J, Shi X. Controlled release of doxorubicin from electrospun MWCNTs/PLGA hybrid nanofibers. Chin J Polym Sci. 2016;34:1047.

    Article  Google Scholar 

  43. Zheng F, Wang S, Hou W, Xiao Y, Liu P, Shi X, Shen M. Comparative study of resazurin reduction and MTT assays for cytocompatibility evaluation of nanofibrous materials. Anal Methods. 2019;11:483.

    Article  Google Scholar 

  44. Qi R, Cao X, Shen M, Guo R, Yu J, Shi X. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. J Biomat Sci Polym Ed. 2012;23:299.

    Article  Google Scholar 

  45. Qi R, Guo R, Shen M, Cao X, Zhang L, Xu J, Yu J, Shi X. Electrospun poly(lactic-co-glycolicacid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem. 2010;20:10622.

    Article  Google Scholar 

  46. Qi R, Guo R, Zheng F, Liu H, Yu J, Shi X. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B. 2013;110:148.

    Article  Google Scholar 

  47. Wang S, Zheng F, Huang Y, Fang Y, Shen M, Zhu M, Shi X. Encapsulation of amoxicillin within laponite-doped poly(lactic-co-glycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Appl Mater Interfaces. 2012;4:6393.

    Article  Google Scholar 

  48. Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013;34:1402.

    Article  Google Scholar 

  49. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z. enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7:6331.

    Article  Google Scholar 

  50. Wang Z, Zhao Y, Luo Y, Wang S, Shen M, Tomas H, Zhu M, Shi X. Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 2015;5:2383.

    Article  Google Scholar 

  51. Zhu Z, Wu P, Liu G, He X, Qi B, Zeng G, Wang W, Sun Y, Cui F. Ultrahigh adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chem Eng J. 2017;313:957.

    Article  Google Scholar 

  52. Wang S, Zhao J, Hu F, Li X, An X, Zhou S, Chen Y, Huang M. Phase-Changeable and bubble-releasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. J Mater Chem B. 2016;4:7368.

    Article  Google Scholar 

  53. Cao M, Zhao W, Wang L, Li R, Gong H, Zhang Y, Xu H, Lu J. Graphene oxide-assisted accumulation and layer-by-layer assembly of antibacterial peptide for sustained release applications. ACS Appl Mater Interfaces. 2018;10:24937.

    Article  Google Scholar 

  54. Wu D, Zhi L, Bodwell G, Cui G, Tsao N, Muellen K. Self-Assembly of positively charged discotic PAHs: from nanofibers to nanotubes. Angew Chem Int Ed. 2007;46:5417.

    Article  Google Scholar 

  55. Qiao Z, Shen M, Xiao Y, Zhu M, Mignani S, Majoral J, Shi X. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord Chem Rev. 2018;372:31.

    Article  Google Scholar 

  56. Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomas H, Zhu M, Shi X. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym. 2013;91:419.

    Article  Google Scholar 

  57. Wang S, Wang C, Zhang B, Sun Z, Li Z, Jiang X, Bai X. Preparation of Fe3O4/PVA nanofibers via combining in situ composite with electrospinning. Mater Lett. 2010;64:9.

    Article  Google Scholar 

  58. Wang P, Zhu H, Bao S, Du M, Zhang M. AgNPs/PVA and AgNPs/(PVA/PEI) hybrids: preparation, morphology and antibacterial activity. J Appl Phys. 2013;46:345303.

    Google Scholar 

  59. Han G, Guo B, Zhang L, Yang B. Conductive gold films assembled on electrospun poly(methyl methacrylate) fibrous mats. Adv Mater. 2006;18:1709.

    Article  Google Scholar 

  60. Son W, Youk J, Park W. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym. 2006;65:430.

    Article  Google Scholar 

  61. Avsar G, Agirbasli D, Agirbasli M, Gunduz O, Oner E. Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydr Polym. 2018;193:316.

    Article  Google Scholar 

  62. Song T, Zhang Y, Zhou T. Fabrication of magnetic composite nanofibers of poly(epsilon-caprolactone) with FePt nanoparticles by coaxial electrospinning. J Magn Magn Mater. 2006;303:E286.

    Article  Google Scholar 

  63. Song T, Zhang Y, Zhou T, Lim CT, Ramakrishna S, Liu B. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning. Chem Phys Lett. 2005;415:317.

    Article  Google Scholar 

  64. Hasanzadeh E, Ebrahimi-Barough S, Mirzaei E, Azami M, Tavangar S, Mahmoodi N, Basiri A, Ai J. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. J Biomed Mater Res Part A. 2019;107:802.

    Article  Google Scholar 

  65. Baranes K, Shevach M, Shefi O, Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 2016;16:2916.

    Article  Google Scholar 

  66. Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, Zhang Q. Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers Polym. 2011;12:207.

    Article  Google Scholar 

  67. Haroosh HJ, Dong Y, Ingram GD. Synthesis, morphological structures, and material characterization of electrospun PLA: PCL/magnetic nanoparticle composites for drug delivery. J Polym Sci Part B Polym Phys. 2013;51:1607.

    Google Scholar 

  68. Hu C, Liu S, Zhang Y, Li B, Yang H, Fan C, Cui W. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater. 2013;9:7381.

    Article  Google Scholar 

  69. Destaye A, Lin C, Lee C. Glutaraldehyde vapor cross-linked nanofibrous pva mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces. 2013;5:4745.

    Article  Google Scholar 

  70. Carazo E, Borrego-Sanchez A, Garcia-Villen F, Sanchez-Espejo R, Cerezo P, Aguzzi C, Viseras C. Advanced inorganic nanosystems for skin drug delivery. Chem Rec. 2018;18:891.

    Article  Google Scholar 

  71. Liao Y, Wang Y, Feng X, Wang W, Xu F, Zhang L. Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Mater Chem Phys. 2010;121:534.

    Article  Google Scholar 

  72. Sureshkumar M, Siswanto D, Lee C. Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem. 2010;20:6948.

    Article  Google Scholar 

  73. Deng Z, Zhu H, Peng B, Chen H, Sun Y, Gang X, Jin P, Wang J. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces. 2012;4:5625.

    Article  Google Scholar 

  74. Kumar A, Vemula P, Ajayan P, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7:236.

    Article  Google Scholar 

  75. Han S, Samanta A, Xie X, Huang L, Peng J, Park S, Teh D, Choi Y, Chang Y, All A, Yang Y, Xing B, Liu X. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv Mater. 2017;29:1700244.

    Article  Google Scholar 

  76. Chen S, Sutiman N, Zhang C, Yu Y, Lam S, Khor C, Chowbay B. Pharmacogenetics of irinotecan, doxorubicin and docetaxel transporters in asian and caucasian cancer patients: a comparative review. Drug Metab Rev. 2016;48:502.

    Article  Google Scholar 

  77. Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali MA, Ellithy M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother. 2017;95:1209.

    Article  Google Scholar 

  78. Wibroe PP, Ahmadvand D, Oghabian M, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products doxil (R), caelyx (R), doxorubicin, and sinadoxosome. J Control Release. 2016;221:1.

    Article  Google Scholar 

  79. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297:787.

    Article  Google Scholar 

  80. Dreyer D, Park S, Bielawski C, Ruoff R. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228.

    Article  Google Scholar 

  81. Tomas H, Alves CS, Rodrigues J. Laponite (R): a key nanoplatform for biomedical applications? Nanomedicine. 2018;14:2407.

    Article  Google Scholar 

  82. Yang H, Tang A, Ouyang J, Li M, Mann S. From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. J Phys Chem B. 2010;114:2390.

    Article  Google Scholar 

  83. Qi R, Shen M, Cao X, Guo R, Tian X, Yu J, Shi X. Exploring the dark side of MTT viability assay of cells cultured onto electrospun PLGA-based composite nanofibrous scaffolding materials. Analyst. 2011;136:2897.

    Article  Google Scholar 

  84. Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M, Sampaolesi M, Tagliafico E, Tenedini E, Saggio I, Robey P, Riminucci M, Bianco P. No identical “Mesenchymal Stem Cells’’ at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep. 2016;6:897.

    Article  Google Scholar 

  85. Ullah I, Subbarao R, Rho G. Human mesenchymal stem cells-current trends and future prospective. Biosci Rep. 2015;35:e00191.

    Article  Google Scholar 

  86. Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu G, Liang A, Liu S. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33:627.

    Article  Google Scholar 

  87. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, Shi Y. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128.

    Article  Google Scholar 

  88. Nuti N, Corallo C, Chan B, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511.

    Article  Google Scholar 

  89. Loh K, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2:1015.

    Article  Google Scholar 

  90. Wang C, Wang S, Li K, Ju Y, Li J, Zhang Y, Li J, Liu X, Shi X, Zhao Q. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One. 2014;9:e99585.

    Article  Google Scholar 

  91. Bai Y, Liu Y, Ma C, Wang K, Chen J. Neuron-inspired design of high-performance electrode materials for sodium-ion batteries. ACS Nano. 2018;12:11503.

    Article  Google Scholar 

  92. Kolsbjerg E, Peterson A, Hammer B. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles. Phys Rev B. 2018;97:195424.

    Article  Google Scholar 

  93. Baharifar H, Amani A. Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: an artificial neural networks study. Nanomed NBM. 2016;12:171.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial supports from the Shanghai Education Commission through the Shanghai Leading Talents Program (ZX201903000002), the National Natural Science Foundation of China (81761148028 and 21773026), and the Science and Technology Commission of Shanghai Municipality (17540712000 and 18520750400). X. Shi also acknowledge the supports by FCT-Fundação para a Ciência e a Tecnologia (project PEst-OE/QUI/UI0674/2019, CQM, Portuguese Government funds), and through Madeira 14-20 Program, project PROEQUIPRAM-Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (M1420-01-0145-FEDER-000008) and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, through the project M1420-01-0145-FEDER-000005-Centro de Química da Madeira-CQM+ (Madeira 14-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Xiao, Y. & Shi, X. Construction of Electrospun Organic/Inorganic Hybrid Nanofibers for Drug Delivery and Tissue Engineering Applications. Adv. Fiber Mater. 1, 32–45 (2019). https://doi.org/10.1007/s42765-019-00007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00007-w

Keywords

Navigation