Skip to main content
Log in

Thermal Equilibrium Between Radiation and Matter

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 1916, Einstein rederived the blackbody radiation law of Planck that originated the idea of quantized energy one hundred years ago. For this purpose, Einstein introduced the concept of transition probability, which had a profound influence on the development of quantum theory. In this article, we adopt Einstein's assumptions with two exceptions and seek the statistical condition for the thermal equilibrium of matter without referring to the inner details of either statistical thermodynamics or quantum theory. It is shown that the conditions of thermodynamic equilibrium of electromagnetic radiation and the energy balance of thermal radiation by the matter, between any of its two energy-states, not only result in Planck's radiation law and the Bohr frequency condition, but they remarkably yield the law of the statistical thermal equilibrium of matter: the Maxwell–Boltzmann distribution. Since the transition probabilities of the modern quantum theory of radiation coincide with their definition in Einstein's theory of blackbody radiation, the presented deduction of the Maxwell–Boltzmann distribution is equally valid within the bounds of modern quantum theory. Consequently, within the framework of the fundamental assumptions, the Maxwell–Boltzmann distribution of energy-states is not only a sufficient, but a necessary condition for thermal equilibrium between the matter and radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Planck, “Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, ” Verh. Deuts. phys. Ges. 2, 237–245 (1900).

    Google Scholar 

  2. M. Planck, “über das Gesetz der Energieverteilung im Normalspektrum, ” Ann. Physik 4, 553–566 (1901).

    Google Scholar 

  3. M. Planck, The Theory of Heat Radiation, an unabridged republication of the English tr. by M. Massius (Blakiston, 1914) from the 2nd edn. of Wärmestrahlung of 1913 (Dover, New York, 1959).

  4. A. Einstein, “Strahlungs-emission und-absorption nach der Quantentheorie, ” Verh. Deuts. phys. Ges. 18, 318–323 (1916).

    Google Scholar 

  5. A. Einstein, “Zur Quantentheorie der Strahlung, ” Phys. Z. 18, 121–128 (1917).

    Google Scholar 

  6. A. Einstein, “On the quantum theory of radiation, ” An English tr. of his 1917 Phys. Z. article, in Sources of Quantum Mechanics, B. L. Van der Waerden, ed. (Dover, New York, 1967), pp. 63–77.

    Google Scholar 

  7. Lord Rayleigh, “Remarks upon the law of complete radiation, ” Phil. Mag. 49, 539–540 (1900).

    Google Scholar 

  8. J. H. Jeans, “On the partition of energy between matter and æther, ” Phil. Mag. 10, 91–98 (1905).

    Google Scholar 

  9. Lord Rayleigh, “The dynamical theory of gases and of radiation, ” Nature 72, 54–55 (1905).

    Google Scholar 

  10. Lord Rayleigh, “The constant of radiation as calculated from molecular data, ” Nature 72, 243–244 (1905).

    Google Scholar 

  11. P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation, ” Proc. Roy. Soc. London Ser. A 114, 243–265 (1927).

    Google Scholar 

  12. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th rev. edn. (Oxford University Press, London, 1976), pp. 225–252.

    Google Scholar 

  13. W. Wien, “Eine neue Beziehung der Strahlung schwarzer Körper zum zweiten Haupsatz der Wärmetheorie, ” Sitzb. Akad. Wiss. Berlin, 55–62 (xFeb. 9, 1893).

  14. W. Wien, “Temperatur und Entropie der Strahlung, ” Wied. Anal. 52, 132–165 (1894).

    Google Scholar 

  15. A. Sommerfeld, Thermodynamics and Statistical Mechanics, English tr. by J. Kestin, 5th pr., F. Bopp and J. Meixner, eds. (Academic, New York, 1967), pp. 145–148.

    Google Scholar 

  16. E. Schrödinger, Statistical Thermodynamics, 2nd edn. (Cambridge University Press, London, 1952), pp. 11–12 and 16.

    Google Scholar 

  17. A. Einstein and P. E. Ehrenfest, “Zur Quantentheorie des Strahlungsgleichgewichts, ” Z. Phys. 19, 301–306 (1923).

    Google Scholar 

  18. W. Pauli, “über das thermische Gleichgewicht zwischen Strahlung und freien Elecktronen, ” Z. Phys. 18, 272–287 (1923).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanyi, G. Thermal Equilibrium Between Radiation and Matter. Foundations of Physics 33, 511–528 (2003). https://doi.org/10.1023/A:1023719800307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023719800307

Navigation