Skip to main content
Log in

On the Accuracy of Conductance Quantization in Spin-Hall Insulators

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In contrast to the case of ordinary quantum Hall effect, the resistance of ballistic helical edge channels in typical quantum spin-Hall experiments is non-vanishing, additive and poorly quantized. Here we present a simple argument connecting this qualitative difference with a spin relaxation in the current/voltage leads in an experimentally relevant multi-terminal bar geometry. Both the finite lead resistance and the spin relaxation contribute to a non-vanishing four-terminal edge resistance, explaining poor quantization quality. We show that corrections to the four-terminal and two-terminal resistances in the limit of strong spin relaxation are opposite in sign, making a measurement of the spin relaxation resistance feasible, and estimate the magnitude of the effect in HgTe-based quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Büttiker, Phys. Rev. B 38, 9375 (1988).

    Article  ADS  Google Scholar 

  2. H.-L. Engquist and P. W. Anderson, Phys. Rev. B 24, 1151 (1981).

    Article  ADS  Google Scholar 

  3. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

    Article  ADS  Google Scholar 

  4. R. de Picciotto, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Nature (London, U.K.) 411, 51 (2001).

    Article  ADS  Google Scholar 

  5. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science (Washington, DC, U. S.) 314, 1757 (2006).

    Article  ADS  Google Scholar 

  6. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).

    Article  ADS  Google Scholar 

  7. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  8. G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 89, 125305 (2014).

    Article  ADS  Google Scholar 

  9. E. S. Tikhonov, D. V. Shovkun, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 101, 708 (2015).

    Article  ADS  Google Scholar 

  10. S. U. Piatrusha, L. V. Ginzburg, E. S. Tikhonov, D. V. Shovkun, G. Koblmüller, A. V. Bubis, A. K. Grebenko, A. G. Nasibulin, and V. S. Khrapai, JETP Lett. 108, 71 (2018).

    Article  ADS  Google Scholar 

  11. S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science (Washington, DC, U. S.) 359, 76 (2018).

    Article  ADS  Google Scholar 

  12. A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 325, 294 (2009).

    Article  ADS  Google Scholar 

  13. T. Li, P. Wang, G. Sullivan, X. Lin, and R.-R. Du, Phys. Rev. B 96, 241406 (2017).

    Article  ADS  Google Scholar 

  14. K. Bendias, S. Shamim, O. Herrmann, A. Budewitz, P. Shekhar, P. Leubner, J. Kleinlein, E. Bocquillon, H. Buhmann, and L. W. Molenkamp, Nano Lett. 18, 4831 (2018).

    Article  ADS  Google Scholar 

  15. E. B. Olshanetsky, Z. D. Kvon, G. M. Gusev, A. D. Levin, O. E. Raichev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. Lett. 114, 126802 (2015).

    Article  ADS  Google Scholar 

  16. A. Mani and C. Benjamin, J. Phys.: Condens. Matter 28, 145303 (2016).

    ADS  Google Scholar 

  17. A. Mani and C. Benjamin, Phys. Rev. Appl. 6, 014003 (2016).

    Article  ADS  Google Scholar 

  18. A. Mani and C. Benjamin, Sci. Rep. 7, 6954 (2017).

    Article  ADS  Google Scholar 

  19. P. P. Aseev and S. N. Artemenko, JETP Lett. 98, 285 (2013).

    Article  ADS  Google Scholar 

  20. M. V. Entin and L. I. Magarill, JETP Lett. 103, 711 (2016).

    Article  ADS  Google Scholar 

  21. F. m. c. Couëdo, H. Irie, K. Suzuki, K. Onomitsu, and K. Muraki, Phys. Rev. B 94, 035301 (2016).

    Article  ADS  Google Scholar 

  22. Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Nat. Phys. 13, 677 (2017).

    Article  Google Scholar 

  23. C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 8, 485 (2012).

    Article  Google Scholar 

  24. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 85, 235312 (2012).

    Article  ADS  Google Scholar 

  25. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 96, 730 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Khrapai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyzheva, S.K., Tikhonov, E.S. & Khrapai, V.S. On the Accuracy of Conductance Quantization in Spin-Hall Insulators. Jetp Lett. 109, 92–95 (2019). https://doi.org/10.1134/S0021364019020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019020024

Navigation