Skip to main content
Log in

Raman Scattering in Chiral-Pure and Racemic Phases of Tryptophan and Tyrosine Polycrystals

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Raman spectra of tryptophan and tyrosine polycrystals have been analyzed in a wide spectral range by fiber-optic spectroscopy. The Raman spectra have been recorded with a BWS465-785H spectrometer in the spectral range of 0–2700 cm–1 using a 785-nm cw laser as an excitation source. Parameters of the Raman spectra are compared for three crystalline phase modifications of aromatic amino acids: left-handed, right-handed, and racemic phase. The presence of strong Raman satellites, the characteristics of which change depending on the type of the chiral phase state of amino acid, is found in the low-frequency Raman spectra of tryptophan and tyrosine amino acid lattices. The results obtained can be used for monitoring the chiral purity of bioactive preparations containing amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. S. Breen, C. Kemena, P. K. Vlasov, et al., Nature (London, U.K.) 490, 535 (2012).

    Article  ADS  Google Scholar 

  2. J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).

    Article  ADS  Google Scholar 

  3. S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).

    Article  Google Scholar 

  4. K. Moovendaran, S. A. Martin Britto Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).

    Article  ADS  Google Scholar 

  5. C.-H. Chuang and Y.-T. Chen, J. Raman Spectrosc. 40, 150 (2008).

    Article  ADS  Google Scholar 

  6. S. K. Kim, M. S. Kim, and S. W. Suh, J. Raman Spectrosc. 18, 171 (1987).

    Article  ADS  Google Scholar 

  7. H. I. Lee, S. W. Suh, and M. S. Kim, J. Raman Spectrosc. 19, 491 (1988).

    Article  ADS  Google Scholar 

  8. G. Dovbeshko and L. Berezhinsky, J. Mol. Struct. 450, 121 (1998).

    Article  ADS  Google Scholar 

  9. B. L. Silva, P. T. C. Freire, F. E. A. Melo, et al., Braz. J. Phys. 28, 19 (1998).

    Article  ADS  Google Scholar 

  10. J. A. Lima, Jr., P. T. C. Freire, R. J. C. Lima, et al., J. Raman Spectrosc. 36, 1076 (2005).

    Article  ADS  Google Scholar 

  11. G. Zhu, X. Zhu, Q. Fan, et al., Spectrochim. Acta, Part A 78, 1187 (2011).

    Article  ADS  Google Scholar 

  12. G. Yao, J. Zhang, and Q. Huang, Spectrochim. Acta, Part A 151, 111 (2015).

    Article  Google Scholar 

  13. J. A. F. Silva, P. T. C. Freire, J. A. Lima, Jr., et al., Vibr. Spectrosc. 77, 35 (2015).

    Article  Google Scholar 

  14. A. Daniel, A. Prakasarao, K. Dornadula, et al., Spectrochim. Acta A 152, 58 (2016).

    Article  ADS  Google Scholar 

  15. M. A. Belyanchikov, V. S. Gorelik, B. P. Gorshunov, and A. Yu. Pyatyshev, Crystallogr. Rep. 62, 290 (2017).

    Article  ADS  Google Scholar 

  16. S. Suzuki, T. Ohshima, N. Tamiya, et al., Spectrochim. Acta 15, 969 (1959).

    Article  ADS  Google Scholar 

  17. B. Dupuy, C. Castinel, and C. Garrigou-Lagrange, Spectrochim. Acta, Part A 25, 571 (1969).

    Article  ADS  Google Scholar 

  18. M. Tipping, K. Viras, and T. A. King, Biopolymers 23, 2891 (1984).

    Article  Google Scholar 

  19. A. L. Jenkins, R. A. Larsen, and T. B. Williams, Spectrochim. Acta, Part A 61, 1585 (2005).

    Article  ADS  Google Scholar 

  20. T. Gaillard, A. Trivella, R. H. Stote, et al., Spectrochim. Acta, Part A 150, 301 (2015).

    Article  Google Scholar 

  21. J. Casado, J. T. Lopez Navarrete, and F. J. Ramirez, J. Raman Spectrosc. 26, 1003 (1995).

    Article  ADS  Google Scholar 

  22. S. Jarmelo, I. Reva, P. R. Carey, et al., Vibr. Spectrosc. 43, 395 (2007).

    Article  Google Scholar 

  23. K. Moovendaran, M. Britto, S. A. Dhas, and S. Natarajan, Spectrochim. Acta, Part A 112, 326 (2013).

    Article  ADS  Google Scholar 

  24. V. S. Gorelik and I. A. Rakhmatullaev, Inorg. Mater. 40, 686 (2004).

    Article  Google Scholar 

  25. A. Downesand and A. Elfick, J. Sensors 10, 1871 (2010).

    Article  Google Scholar 

  26. V. Sikirzhytski, K. Virkler, and I. K. Lednev, J. Sensors 10, 2869 (2010).

    Article  Google Scholar 

  27. V. S. Gorelik and M. F. Umarov, Opt. Spectrosc. 125, 144 (2018).

    Article  ADS  Google Scholar 

  28. Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and S. V. Morozova, Bull. Lebedev Phys. Inst. 38 (11), 328 (2011).

    Article  ADS  Google Scholar 

  29. Yu. P. Voinov, V. S. Gorelik, A. Yu. Pyatyshev, and M. F. Umarov, Bull. Lebedev Phys. Inst. 39 (12), 341 (2012).

    Article  ADS  Google Scholar 

  30. V. S. Gorelik, A. O. Litvinova, and M. F. Umarov, Bull. Lebedev Phys. Inst. 41 (11), 305 (2014).

    Article  ADS  Google Scholar 

  31. M. F. Umarov and V. S. Gorelik, Optical Spectroscopy of Bioactive Drugs (VoGU, Vologda, 2014).

  32. Yu. P. Voinov, V. S. Gorelik, M. F. Umarov, and M. E. Yurin, RF Patent No. 2488097 (2013).

  33. O. Bakke and A. Mostad, Acta Chem. Scand. 34, 559 (1980).

    Article  Google Scholar 

  34. K. V. Glagolev, Ig. S. Golyak, Il. S. Golyak, A. A. Esakov, V. N. Kornienko, A. N. Morozov, S. E. Tabalin, I. V. Kochikov, and S. I. Svetlichnyi, Opt. Spectrosc. 110, 449 (2011).

    Article  ADS  Google Scholar 

  35. K. V. Glagolev, A. N. Morozov, B. P. Nazarenko, S. E. Tabalin, O. V. Chuburkov, S. I. Svetlichnyi, S. P. Nikitaev, A. V. Rozhnov, V. I. Filippov, and A. A. Grigor’ev, Vestn. MGTU Im. N.E. Baumana, Ser. Estestv. Nauki, No. 3, 9 (2005).

    Google Scholar 

  36. A. Yu. Boiko, A. A. Grigor’ev, G. V. Matsyuk, A. Yu. Pavlov, P. E. Shlygin, S. K. Dvoruk, M. V. Lel’-kov, A. N. Morozov, S. E. Tabalin, G. V. Shishkin, V. N. Kornienko, I. V. Kochikov, and S. I. Svetlichnyi, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 1, 26 (2004).

    Google Scholar 

  37. S. K. Dvoruk, V. N. Kornienko, I. V. Kochikov, M. V. Lel’kov, A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, J. Opt. Technol. 71, 271 (2004).

    Article  ADS  Google Scholar 

  38. A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Vestn. MGTU im. N.E. Baumana, Ser. Estestv. Nauki, No. 2, 3 (2007).

    Google Scholar 

  39. J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Biophys. J. 71, 3350 (1996).

    Article  ADS  Google Scholar 

  40. M. Langlais, H. A. Tajmir–Riahi, and R. Savoie, Biopolymers 30, 743 (1990).

    Article  Google Scholar 

  41. S. Kint and Y. Tomimatsu, Biopolymers 18, 1073 (1979).

    Article  Google Scholar 

  42. J. M. Benevides, S. A. Overman, and G. J. Thomas, J. Raman Spectrosc. 36, 279 (2005).

    Article  ADS  Google Scholar 

  43. K. S. Bortnikov, V. S. Gorelik, and A. A. Esakov, Inorg. Mater. 43, 1313 (2007).

    Article  Google Scholar 

  44. I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Umarov, M.F. & Voinov, Y.P. Raman Scattering in Chiral-Pure and Racemic Phases of Tryptophan and Tyrosine Polycrystals. Opt. Spectrosc. 127, 596–601 (2019). https://doi.org/10.1134/S0030400X19100096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19100096

Keywords:

Navigation