Skip to main content
Log in

Pentagon Identities Arising in Supersymmetric Gauge Theory Computations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The partition functions of three-dimensional N=2 supersymmetric gauge theories on different manifolds can be expressed as q-hypergeometric integrals. Comparing the partition functions of three-dimensional mirror dual theories, we derive complicated integral identities. In some cases, these identities can be written in the form of pentagon relations. Such identities are often interpreted as the Pachner 3–2 move for triangulated manifolds using the so-called 3d–3d correspondence. From the physics perspective, another important application of pentagon identities is that they can be used to construct new solutions of the quantum Yang–Baxter equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Allman and R. Rimányi, “Quantum dilogarithm identities for the square product of A–type Dynkin quivers,” arXiv:1702.04766v3 [math.RT] (2017).

    MATH  Google Scholar 

  2. A. Dimakis and F. Müller–Hoissen, “Simplex and polygon equations,” SIGMA, 11, 042 (2015); arXiv: 1409.7855v2 [math–ph] (2014).

    MathSciNet  MATH  Google Scholar 

  3. I. Gahramanov and H. Rosengren, “Integral pentagon relations for 3d superconformal indices,” in: String–Math 2014 (Proc. Symp. Pure Math., Vol. 93, V. Bouchard, C. Doran, S. Méndez–Diez, and C. Quigley, eds.), Amer. Math. Soc., Providence, R. I. (2016), pp. 165–173; arXiv:1412.2926v2 [hep–th] (2014).

  4. V. Pestun, “Localization of gauge theory on a four–sphere and supersymmetric Wilson loops,” Commun. Math. Phys., 313, 71–129 (2012); arXiv:0712.2824v3 [hep–th] (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R. Kashaev, F. Luo, and G. Vartanov, “A TQFT of Turaev–Viro type on shaped triangulations,” Ann. Henri Poincaré, 17, 1109–1143 (2016); arXiv:1210.8393v1 [math.QA] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. T. Dimofte, D. Gaiotto, and S. Gukov, “Gauge theories labelled by three–manifolds,” Commun. Math. Phys., 325, 367–419 (2014); arXiv:1108.4389v1 [hep–th] (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. Dimofte, D. Gaiotto, and S. Gukov, “3–Manifolds and 3d indices,” Adv. Theor. Math. Phys., 17, 975–1076 (2013); arXiv:1112.5179v1 [hep–th] (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Gahramanov and H. Rosengren, “A new pentagon identity for the tetrahedron index,” JHEP, 1311, 128 (2013); arXiv:1309.2195v3 [hep–th] (2013).

    Article  ADS  Google Scholar 

  9. I. Gahramanov and H. Rosengren, “Basic hypergeometry of supersymmetric dualities,” Nucl. Phys. B, 913, 747–768 (2016); arXiv:1606.08185v2 [hep–th] (2016).

    Article  ADS  MATH  Google Scholar 

  10. Y. Imamura and D. Yokoyama, “S3/Zn partition function and dualities,” JHEP, 1211, 122 (2012); arXiv: 1208.1404v2 [hep–th] (2012).

    Article  ADS  MATH  Google Scholar 

  11. R. M. Kashaev, “Beta pentagon relations,” Theor. Math. Phys., 181, 1194–1205 (2014); arXiv:1403.1298v2 [math–ph] (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. U. von Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten,” Abh. Math. Sem. Univ. Hamburg, 57, 69–86 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Pachner, “P. L. homeomorphic manifolds are equivalent by elementary shellings,” Eur. J. Combin., 12, 129–145 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, and A. V. Smirnov, “Three–dimensional extensions of the Alday–Gaiotto–Tachikawa relation,” Theor. Math. Phys., 172, 939–962 (2012); arXiv:1104.2589v3 [hep–th] (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Dimofte, “3d superconformal theories from three–manifolds,” in: New Dualities of Supersymmetric Gauge Theories (J. Teschner, ed.), Springer, Cham (2016), pp. 339–373; arXiv:1412.7129v1 [hep–th] (2014).

    Google Scholar 

  16. Y. Terashima and M. Yamazaki, “Semiclassical analysis of the 3d/3d relation,” Phys. Rev. D, 88, 026011 (2013); arXiv:1106.3066v3 [hep–th] (2011).

    Article  ADS  Google Scholar 

  17. L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville correlation functions from four–dimensional gauge theories,” Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep–th] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. D. Faddeev and R. M. Kashaev, “Quantum dilogarithm,” Modern Phys. Lett. A, 9, 427–434 (1994); arXiv: hep–th/9310070v1 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L. D. Faddeev, “Volkov’s pentagon for the modular quantum dilogarithm,” Funct. Anal. Appl., 45, 291–296 (2011); arXiv:1201.6464v1 [math.QA] (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Yu. Volkov, “Beyond the ‘pentagon identity’,” Lett. Math. Phys., 39, 393–397 (1997); arXiv:q–alg/9603003v1 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Yu. Volkov, “Pentagon identity revisited I,” Int. Math. Res. Notices, 2012, No. 20, 4619–4624 (2012); arXiv: 1104.2267v1 [math.QA] (201).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. M. Kashaev and S. M. Sergeev, “On pentagon, ten term, and tetrahedron relations,” Commun. Math. Phys., 195, 309–319 (1998); arXiv:q–alg/9607032v1 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. M. Kashaev, “On the spectrum of Dehn twists in quantumTeichmüller theory,” in: Physics and Combinatorics (A. N. Kirillov and N. Liskova, eds.), World Scientific, Singapore (2001), pp. 63–81; arXiv:math/0008148v1 (2000).

    Google Scholar 

  24. N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting,” Adv. Theor. Math. Phys., 7, 831–864 (2003); arXiv:hep–th/0206161v1 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Hosomichi, “The localization principle in SUSY gauge theories,” Prog. Theor. Exp. Phys., 2015, 11B101 (2015); arXiv:1502.04543v1 [hep–th] (2015).

    Google Scholar 

  26. B. Willett, “Localization on three–dimensional manifolds,” J. Phys. A: Math. Theor., 50, 443006 (2017); arXiv: 1608.02958v3 [hep–th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Cremonesi, “Localization and supersymmetry on curved space,” PoS(Modave2013), 201, 002 (2013).

    Google Scholar 

  28. K. A. Intriligator and N. Seiberg, “Mirror symmetry in three–dimensional gauge theories,” Phys. Lett. B, 387, 513–519 (1996); arXiv:hep–th/9607207v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  29. O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. Strassler, “Aspects of N=2 supersymmetric gauge theories in three–dimensions,” Nucl. Phys. B, 499, 67–99 (1997); arXiv:hep–th/9703110v1 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. Kapustin and B. Willett, “Generalized superconformal index for three dimensional field theories,” arXiv: 1106.2484v1 [hep–th] (2011).

    Google Scholar 

  31. A. Kapustin, B. Willett, and I. Yaakov, “Exact results for Wilson loops in superconformal Chern–Simons theories with matter,” JHEP, 1003, 089 (2010); arXiv:0909.4559v4 [hep–th] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. N. Hama, K. Hosomichi, and S. Lee, “Notes on SUSY gauge theories on three–sphere,” JHEP, 1103, 127 (2011); arXiv:1012.3512v3 [hep–th] (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. L. Jafferis, “The exact superconformal R–symmetry extremizes Z,” JHEP, 1205, 159 (2012); arXiv: 1012.3210v2 [hep–th] (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. N. Hama, K. Hosomichi, and S. Lee, “SUSY gauge theories on squashed three–spheres,” JHEP, 1105, 014 (2011); arXiv:1102.4716v1 [hep–th] (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. P. Spiridonov and G. S. Vartanov, “Elliptic hypergeometry of supersymmetric dualities II: Orthogonal groups, knots, and vortices,” Commun. Math. Phys., 325, 421–486 (2014); arXiv:1107.5788v4 [hep–th] (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. I. Gahramanov and A. P. Kels, “The star–triangle relation, lens partition function, and hypergeometric sum/integrals,” JHEP, 1702, 040 (2017); arXiv:1610.09229v1 [math–ph] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. I. Gahramanov and S. Jafarzade, “Integrable lattice spin models from supersymmetric dualities,” arXiv: 1712.09651v1 [math–ph] (2017).

    Google Scholar 

  38. C. Krattenthaler, V. Spiridonov, and G. Vartanov, “Superconformal indices of three–dimensional theories related by mirror symmetry,” JHEP, 1106, 008 (2011); arXiv:1103.4075v2 [hep–th] (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Tanaka, H. Mori, and T. Morita, “Superconformal index on RP2 × S1 and mirror symmetry,” Phys. Rev. D, 91, 105023 (2015); arXiv:1408.3371v3 [hep–th] (2014).

    Article  ADS  Google Scholar 

  40. A. Tanaka, H. Mori, and T. Morita, “Abelian 3d mirror symmetry on RP2 × S1 with Nf = 1,” JHEP, 1509, 154 (2015); arXiv:1505.07539v2 [hep–th] (2015).

    Article  ADS  Google Scholar 

  41. H. Mori and A. Tanaka, “Varieties of Abelian mirror symmetry on RP2 ×S1,” JHEP, 1602, 088 (2016); arXiv: 1512.02835v3 [hep–th] (2015).

    Article  ADS  Google Scholar 

  42. V. Spiridonov, “Elliptic beta integrals and solvable models of statistical mechanics,” in: Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems, and Supersymmetric Quantum Mechanics (Contemp. Math., Vol. 563, P. B. Acosta–Humánez, F. Finkel, N. Kamran, and P. J. Olver), Amer.Math. Soc., Providence, R. I. (2012), pp. 181–211; arXiv:1011.3798v2 [hep–th] (2010).

  43. S. Benvenuti and S. Pasquetti, “3d N=2 mirror symmetry, pq–webs, and monopole superpotentials,” JHEP, 1608, 136 (2016); arXiv:1605.02675v2 [hep–th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. K. Hikami, “Generalized volume conjecture and the A–polynomials: The Neumann–Zagier potential function as a classical limit of quantum invariant,” J. Geom. Phys., 57, 1895–1940 (2007); arXiv:math/0604094v1 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. R. M. Kashaev, “The hyperbolic volume of knots from quantum dilogarithm,” Lett. Math. Phys., 39, 269–275 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Gang, N. Kim, and S. Lee, “Holography of wrapped M5–branes and Chern–Simons theory,” Phys. Lett. B, 733, 316–319 (2014); arXiv:1401.3595v3 [hep–th] (2014).

    Article  ADS  MATH  Google Scholar 

  47. V. V. Bazhanov, A. P. Kels, and S. M. Sergeev, “Quasi–classical expansion of the star–triangle relation and integrable systems on quad–graphs,” J. Phys. A, 49, 464001 (2016); arXiv:1602.07076v4 [math–ph] (2016).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Jafarzade and Z. Nazari, “A new integrable Ising–type model from 2d N=(2, 2) dualities,” arXiv:1709.00070v2 [hep–th] (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Gahramanov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 2, pp. 215–224, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, D.N., Gahramanov, I.B. Pentagon Identities Arising in Supersymmetric Gauge Theory Computations. Theor Math Phys 198, 189–196 (2019). https://doi.org/10.1134/S0040577919020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919020028

Keywords

Navigation