Skip to main content
Log in

Influence of Linear Plus Quadratic Interactions Between Dark Components of the Universe on Thermodynamics

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We work with the holographic model of interacting dark sector (dark energy plus dark matter) of the universe. The generalized Chaplygin gas model is taken as a Dark Energy (DE) candidate, and it interacts with Cold Dark Matter (CDM) in the framework of linear plus quadratic equation of state (EoS) parameter. We study the effect of interaction on the thermodynamics of the universe. Three interaction parameters of DE-CDM are considered: ΓρDE, ΓρDM, and Γ(ρDE + ρDM). We derive the corresponding effective equation of states for these different interaction parameters and analyze the behaviors of the derivative of entropies for DE, CDM and the apparent horizon, which is considered as a boundary of the universe. For this purpose the Generalized Second Law (GSL) of thermodynamics is used in the Friedman- Robertson-Walker (FRW) space to analyze the effect of quadratic terms on the thermodynamics of the universe, and the results are analyzed and compared with the solution for the linear form given in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astroph. J. 517, 565 (1999).

    Article  ADS  MATH  Google Scholar 

  3. C. H. Lineweaver, “Cosmological parameters,” arXiv: ph/0112381.

  4. P. J. E. Peebles, and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. T. Padmanabhan, “Cosmological constant, the weight of the vacuum,” Phys. Rep. 380, 235 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. Feng, W. Xiulian, and Z. Xinmin, “Dark energy constraints from the cosmic age and supernovae,” Phys. Rev. B 607, 35 (2005).

    Google Scholar 

  7. Y. F. Cai, E. N. Saridakis, M. R. Setare, and J. Q. Xia, “Quintom cosmology: theoretical implications and observations,” Phys. Rep. 493, 1 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Caldera-Cabral, M. Roy, and L. A. Urea˜ -Lo´ pez, “Dynamics of interacting dark energy,” Phys. Rev. D 79, 063518 (2009).

    Article  ADS  Google Scholar 

  9. A. Kamenshchik, M. Ugo, and P. Vincent, “An alternative to quintessence,” Phys. Lett. B 265, 511 (2001).

    Google Scholar 

  10. S. Wang, W. Yi, and L. Miao, “Holographic dark energy,” arXiv: 1612. 00345. to appear in Phys. Rep.

  11. B. Wang, G. Yungui, and A. Elcio, “Transition of the dark energy equation of state in an interacting holographic dark energy model,” Phys. Lett. B 624, 141 (2005).

    Article  ADS  Google Scholar 

  12. B. Borah and M. Ansari, “Power-law entropycorrected new holographic dark energy in Brans-Dicke cosmology,” Canadian J. Phys. 93, 475 (2014).

    Article  ADS  Google Scholar 

  13. M. A. Zadeh, A. Sheykhi, and H. Moradpour, “Holographic dark energy with the sign-changeable interaction term,” Int. J. Mod. Phys. D 26, 1750080 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K. H. Kim, W. L. Hyung and S. M. Yun, “Non-flat universe and interacting dark energy model,” Phys. Lett. B 648, 107 (2007).

    Article  ADS  Google Scholar 

  15. K. H. Kim, W. L. Hyung, and S. M. Yun, “Equation of state for an interacting holographic dark energy model,” Phys. Lett. B 632, 605 (2007).

    Article  ADS  Google Scholar 

  16. B. Wang, L. Chi-Yong, and A. Elcio, “Constraints on the interacting holographic dark energymodel,” Phys. Lett. B 637, 357 (2005).

    Article  ADS  Google Scholar 

  17. M. Li, “A model of holographic dark energy,” Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  18. J. H. He and B. Wang, “Effects of the interaction between dark energy and dark matter on cosmological parameters,” JCAP 2008, 10 (2008).

    Article  Google Scholar 

  19. M. B. Gavela et al., “Dark coupling,” JCAP 2009, 34 (2009).

    Article  ADS  Google Scholar 

  20. E. Aydiner, “A new scenario of the universe dynamics with interacting fluids,” arXiv: 1610. 07338.

  21. D. G Deveci and E. Aydiner, “Quadratic interaction effect on the dark energy density in the universe,” Chinese Phys. B 26, 1009501 (2017).

    Article  Google Scholar 

  22. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. N. Spergel et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology,” Astroph. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  24. H. M. Sadjadi, “Generalized second law in a phantom-dominated universe,” gr-qc/0512140.

  25. C. Rong-Gen and S. P. Kim, “First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe,” JHEP 2005, 50 (2005).

    MathSciNet  Google Scholar 

  26. U. Debnath, “Holographic dark energy interacting with two fluids and validity of generalized second law of thermodynamics,” Astroph. Space Sci. 337, 503 (2012).

    Article  ADS  MATH  Google Scholar 

  27. A. Chamblin, et al., “Holography, thermodynamics, and fluctuations of charged AdS black holes,” Phys. Rev. D 60, 104026 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. R. Setare and S. Shafei, “A holographic model of dark energy and the thermodynamics of a nonflat accelerated expanding universe,” JCAP 2006, 11 (2006).

    Article  Google Scholar 

  29. M. Sharif and K. Farida, “Kaluza-Klein cosmology with modified holographic dark energy,” Gen. Rel. Grav. 43, 2885 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. R. Setare, “Holographic Chaplygin gas model,” JCAP 2007, 23 (2007).

    Article  MATH  Google Scholar 

  31. T. K. Mathew, “Entropy of the holographic dark energy and generalized second law,” arXiv: 1401. 8117.

  32. R. R. Caldwell, K. Marc, and N. Weinberg, “Phantom dark energy withω < −1 causes a cosmic doomsday,” Phys. Rev. Lett. 91, 071301 (2003).

    Article  ADS  Google Scholar 

  33. H. Ebadi and H. Moradpour, “Thermodynamical description of modified generalized Chaplygin gas model of dark energy,” Int. J. Theor. Phys. 55, 1612 (2016).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Gemici-Deveci or E. Aydiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemici-Deveci, D., Aydiner, E. Influence of Linear Plus Quadratic Interactions Between Dark Components of the Universe on Thermodynamics. Gravit. Cosmol. 25, 75–81 (2019). https://doi.org/10.1134/S0202289319010043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319010043

Navigation