Skip to main content
Log in

Aeroptical Effects Caused by Supersonic Airflow around an Ogival Body

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

An optical model of a shock wave generated due to supersonic airflow around a body of an ogival form is developed. Mean values of airflow parameters were calculated from the Navier–Stokes equations using the CFD Fluent 6.0 software package accounting for the gas compressibility. It is shown that the maximum values of the structure parameters are several orders of magnitude larger than the values typical for an unperturbed shock wave in the atmosphere. Results of numerical simulation of propagation of an optical beam which crosses the shock wave at the beginning of a path and then propagates through a homogeneous medium are presented. It is shown that an increase in the aircraft speed increases the transverse dimensions of the beam due to diffraction. The angular deviation of the beam from rectilinear propagation under the impact of the shock wave depends only on the altitude above the Earth’s surface where the shock wave is generated. The impact of the shock wave on the crossing beam weakens as the altitude increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26 (11), 932–941 (2013).

    Google Scholar 

  2. A. A. Sukharev and A. V. Falits, “Focusing and deviation from the rectilinear direction of propagation of the optical beam crossing a shock wave at the beginning of a path in a homogeneous medium,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/3, 350–352 (2013).

  3. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Optical beam distortions induced by a shock wave,” Appl. Opt. 54 (8), 2023–2031 (2015).

    Article  ADS  Google Scholar 

  4. V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body,” Atmos. Ocean. Opt. 28 (1), 24–33 (2015).

    Article  Google Scholar 

  5. A. A. Sukharev and A. V. Falits, “Distribution of the optical beam mean intensity and propagation direction during propagation of a shock wave generated by an aircraft moving through the atmosphere with a hypersonic speed,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/2, 198–200 (2012).

  6. A. A. Sukharev and A. V. Falits, “Definition of the boundaries of prevailing influence of shock waves on optical beam propagating in a turbulent atmosphere,” Izv. Vyssh. Ucheb. Zaved., Fiz., No. 8/3, 353–355 (2013).

  7. V. A. Banakh and A. A. Sukharev, “Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft,” Atmos. Ocean. Opt. 29 (3), 225–233 (2016).

    Article  Google Scholar 

  8. V. A. Banakh and A. A. Sukharev, “Contribution of atmospheric turbulence in distortions of laser beams caused by a shock wave arising at the supersonic flowing the turret,” Opt. Atmos. Okeana 29 (4), 257–262 (2016).

    Google Scholar 

  9. E. Frumker and O. Pade, “Generic method for aero-optic evaluations,” Appl. Opt. 43 (16), 3224–3228 (2004).

    Article  ADS  Google Scholar 

  10. O. Pade, “Propagation through shear layers,” Proc. SPIE–Int. Soc. Opt. Eng. 6364, 63640 (2006).

  11. K. N. Volkov and V. N. Emel’yanov, “Aerooptic effects in a turbulent flow and their simulation,” Tech. Phys. Rus. J. Appl. Phys. 53 (2) 217–223 (2008).

    Google Scholar 

  12. M. Henriksson, L. Sjoqvist, and C. Fureby, “Numerical laser beam propagation using large eddy simulation of a jet engine flow field,” Opt. Eng. 54 (8), 085101 (2015). https://doi.org/10.1117/1.OE.54.8.085101

    Article  Google Scholar 

  13. M. Henriksson, Ch. Eisele, D. Seiffer, L. Sjoqvist, F. Togna, and M.-Th. Velluet, “Airborne platform effects on lasers and warning sensors,” Proc. SPIE–Int. Soc. Opt. Eng. 10435 (2017).

  14. L. Bo and L. Hong, “Aero-optical characteristics of supersonic flow over blunt wedge with cavity window,” J. Shanghai Jiaotong Univ. 16 (6), 742–749 (2011).

    Article  Google Scholar 

  15. L. Xu and Y. Cai, “Influence of altitude on aero-optic imaging deviation,” Appl. Opt. 50 (18), 2949–2957 (2011).

    Article  ADS  Google Scholar 

  16. M. Wang, A. Mani, and S. Gordeev, “Physics and computation of aero-optics,” Annu. Rev. Fluid Mech. 44, 299–321 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X. Zhao, “hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20, 16494–16503 (2012).

    Article  ADS  Google Scholar 

  18. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965), Part 1 [in Russian].

  19. D. C. Wilcox, Turbulence modeling for CFD (DCW Industries, La Canada, California, 2006).

    Google Scholar 

  20. V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111 (6), 967–972 (2011).

    Article  Google Scholar 

  21. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1967), Part 2 [in Russian].

  22. A. J. Smits and J.-P. Dussauge, Turbulent Shear Layers in Supersonic Flow (AIP Press, New York, 1996).

    Google Scholar 

  23. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  24. K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Wang Xi, “Structure of the refractive index distribution of the supersonic turbulent boundary layer,” Opt. Lasers Engin. 51 (9), 1113–1119 (2013).

    Article  Google Scholar 

  26. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), vol. 5 [in Russian].

    Google Scholar 

  27. V. P. Kandidov, “Monte Karlo method in nonlinear statistical optics,” Phys.-Uspekhi 39 (12), 1243–1272 (1996).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the President of the Russian Federation (grant no. MK-1366.2017.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sukharev.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharev, A.A. Aeroptical Effects Caused by Supersonic Airflow around an Ogival Body. Atmos Ocean Opt 32, 207–212 (2019). https://doi.org/10.1134/S1024856019020131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019020131

Keywords:

Navigation