Skip to main content
Log in

Numerical Analysis of Electron Runaway in the Presence of Enhanced Field in the Vicinity of a Microtip

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Transition of field-emission electrons to the runaway regime in the region of enhanced electric field determined by the configuration of a microtip on a cathode is studied at several pressures of gas medium. The problem is solved using simulation of electron motion in the presence of nonuniform electric field with the aid of the Monte Carlo procedure in the 2D configuration. Nitrogen is used as a working gas. Passage through a relatively small region of the enhanced field in the vicinity of the microtip may substantially facilitate electron escape to the runaway regime, especially, at pressures of greater than 10 atm. In our opinion, the resulting runaway electrons may provide preionization of gas medium and formation of the initial stage of a 3D discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yu. L. Stankevich and V. G. Kalinin, Dokl. Akad. Nauk SSSR 177, 72 (1967).

    Google Scholar 

  2. S. Frankel, V. Highland, T. Sloan, O. Van Dyck, and W. Wales, Nucl. Instrum. Methods 44, 345 (1966).

    Article  ADS  Google Scholar 

  3. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys. Usp. 33, 521 (1990).

    Article  ADS  Google Scholar 

  4. G. A. Mesyats, S. D. Korovin, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, Tech. Phys. Lett. 32, 18 (2006).

    Article  ADS  Google Scholar 

  5. G. A. Mesyats, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, Tech. Phys. Lett 34, 169 (2008).

    Article  ADS  Google Scholar 

  6. I. D. Kostyrya, E. Kh. Baksht, and V. F. Tarasenko, Instrum. Exp. Tech. 53, 545 (2010).

    Article  Google Scholar 

  7. V. F. Tarasenko, Plasma Phys. Rep. 37, 409 (2011).

    Article  ADS  Google Scholar 

  8. G. A. Mesyats, A. G. Sadykova, et al., IEEE Trans. Plasma Sci. 41, 2863 (2013).

    Article  ADS  Google Scholar 

  9. V. A. Shklyaev, S. Ya. Belomyttsev, and V. V. Ryzhov, J. Appl. Phys. 112, 113303 (2012).

    Article  ADS  Google Scholar 

  10. N. M. Zubarev and S. N. Ivanov, Plasma Phys. Rep. 44, 445 (2018).

    Article  ADS  Google Scholar 

  11. S. N. Ivanov, J. Phys. D: Appl. Phys. 46, 285201 (2013).

    Article  Google Scholar 

  12. S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, Tech. Phys. 53, 1162 (2008).

    Article  Google Scholar 

  13. S. N. Ivanov and V. V. Lisenkov, Tech. Phys. 55, 53 (2010).

    Article  Google Scholar 

  14. S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, J. Phys. D: Appl. Phys. 43, 315204 (2010).

    Article  ADS  Google Scholar 

  15. O. M. Ogorodnikova, Inf. Tekhnol. Proekt. Proizvod., No. 2, 30 (2014).

  16. A. G. Engelhardt, A. V. Phelps, and C. G. Risk, Phys. Rev. 135, A1566 (1964).

    Article  ADS  Google Scholar 

  17. G. J. Schulz, Phys. Rev. 135, A988 (1964).

    Article  ADS  Google Scholar 

  18. D. C. Cartwright, Phys. Rev. A 16, 1013 (1977).

    Article  ADS  Google Scholar 

  19. D. C. Cartwright, Phys. Rev. A 16, 1041 (1977).

    Article  ADS  Google Scholar 

  20. L. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1 (1966).

    Article  ADS  Google Scholar 

  21. A. V. Phelps and L. C. Pitchford, Phys. Rev. A 31, 2932 (1985).

    Article  ADS  Google Scholar 

  22. B. M. Jelenkovic and A. V. Phelps, Phys. Rev. A 36, 5310 (1987).

    Article  ADS  Google Scholar 

  23. K. I. Bakhov, L. P. Babich, and I. M. Kutsyk, IEEE Trans. Plasma Sci. 28, 1254 (2000).

    Article  ADS  Google Scholar 

  24. A. N. Tkachev and S. I. Yakovlenko, Tech. Phys. Lett. 32, 572 (2006).

    Article  ADS  Google Scholar 

  25. S. N. Ivanov, Dokl. Phys. 49, 701 (2004).

    Article  ADS  Google Scholar 

  26. S. N. Ivanov and K. A. Sharypov, Tech. Phys. Lett. 42, 274 (2016).

    Article  ADS  Google Scholar 

  27. S. N. Ivanov and V. V. Lisenkov, Plasma Phys. Rep. 44, 369 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lisenkov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenkov, V.V., Ivanov, S.N., Mamontov, Y.I. et al. Numerical Analysis of Electron Runaway in the Presence of Enhanced Field in the Vicinity of a Microtip. Tech. Phys. 63, 1872–1875 (2018). https://doi.org/10.1134/S1063784218120095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120095

Navigation