Skip to main content
Log in

Factors Affecting Predator-Prey Distribution in a Protected Area, Tehran, Iran (a Case with Wolves and Wild Sheep)

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

We tried to model habitat suitability of two prey and predator species including wild sheep (Ovis orientalis) and wolf (Canis lupus) in Varjin protected area located in northern east of Tehran using a presence only method, maximum entropy (MaxEnt). Totally 11 environmental variables were measured in the species presence points which can be classified in three groups including topographical, vegetation and distal variables. Resulted maps indicated that habitat variables such as slope (ranging from 35 to 40 percent) and elevation (lower than 1700 meters above sea level) are both institute those factors which mostly affect studied prey and predator habitat use. Our results regarding prey and predator geographical range of used habitat indicated that wolves cover most area than wild sheep which show more dispersed habitat resources for the prey species. ENMTools test revealed that wolf’s niche breadth is more than twice as much as wild sheep’s. Wild sheep in Varjin protected area has a relatively narrow geographical extent and shows a tendency to marginal habitats while wolves cover obviously more areas which denotes its high mobility and low dependency to specific habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andren, H., Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review, Oikos, 1994, pp. 355–366.

    Google Scholar 

  2. Fahrig, L., Relative effects of habitat loss and fragmentation on population extinction, J. Wildl. Manag., 1997, pp. 603–610.

    Google Scholar 

  3. Svancara, L.K., Scott, M., Groves, C.R., Noss, R.F., and Pressey, R.L., Policy-driven versus evidence-based conservation: A review of political targets and biological needs, BioScience, 2005, vol. 55, pp. 989–995.

    Article  Google Scholar 

  4. Kearney, M. and Porter, W.P., Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard, Ecology, 2004, vol. 85, pp. 3119–3131.

    Article  Google Scholar 

  5. Price, T.D. and Kirkpatrick, M., Evolutionarily stable range limits set by interspecific competition, Proc. R. Soc. London, Ser. B, 2009, vol. 276 (1661), pp. 1429–1434. doi 10.1098/rspb.2008.1199

    Article  Google Scholar 

  6. Arsenault, R. and Owen-Smith, N., Facilitation versus competition in grazing herbivore assemblages, Oikos, 2002, vol. 97, pp. 313–318.

    Article  Google Scholar 

  7. Zollner, P.A. and Lima, S.L., Search strategies for landscape-level interpatch movements, Ecology, 1999, vol. 80, pp. 1019–1030.

    Article  Google Scholar 

  8. Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., et al., Using species distribution models to predict new occurrences for rare plants, Divers. Distributions, 2009, vol. 15, pp. 565–576.

    Article  Google Scholar 

  9. Forrest, J.L., Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., et al., Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya, Biol. Conserv., 2012, vol. 150, pp. 129–135.

    Article  Google Scholar 

  10. Aryal, A., Brunton, D., Ji, W., and Raubenheimer, D., Blue sheep in the Annapurna Conservation Area, Nepal: Habitat use, population biomass and their contribution to the carrying capacity of snow leopards, Integr. Zool., 2014, vol. 9, pp. 34–45.

    Article  PubMed  Google Scholar 

  11. Peers, M.J., Wehtje, M., Thornton, D.H., and Murray, D.L., Prey switching as a means of enhancing persistence in predators at the trailing southern edge, Global Change Biol., 2014, vol. 20, pp. 1126–1135.

    Article  Google Scholar 

  12. Phillips, S.J., Dudík, M., Schapire, R.E., A maximum entropy approach to species distribution modeling, in ICML '04: Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada, July 4–8, 2004, New York: ACM, 2004, p.83.

    Chapter  Google Scholar 

  13. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, pp. 231–259.

    Article  Google Scholar 

  14. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Divers. Distributions, 2011, vol. 17, pp. 43–57.

    Article  Google Scholar 

  15. Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., and Guisan, A., Effects of sample size on the performance of species distribution models, Divers. Distributions, 2008, vol. 14, pp. 763–773.

    Article  Google Scholar 

  16. Fielding, A.H., Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/ absence models, Environ. Conserv., 1997, vol. 24, pp. 38–49.

    Article  Google Scholar 

  17. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I., et al., Predicting species distributions for conservation decisions, Ecol. Lett., 2013, vol. 16, pp. 1424–1435.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manel, S., Williams, H.C., Ormerod, S.J., Evaluating presence–absence models in ecology: The need to account for prevalence, J. Appl. Ecol., 2001, vol. 38, pp. 921–931.

    Article  Google Scholar 

  19. Franklin, J., Wejnert, K.E., Hathaway, S.A., Rochester, C.J., and Fisher, R.N., Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California, Divers. Distributions, 2009, vol. 15, pp. 167–177.

    Article  Google Scholar 

  20. Phillips, S.J. and Dudík, M., Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, pp. 161–175.

    Article  Google Scholar 

  21. Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution, Evolution, 2008, vol. 62, pp. 2868–2883.

    Article  PubMed  Google Scholar 

  22. Legault, A., Theuerkauf, J., Chartendrault, V., Rouys, S., Saoumoé, M., Verfaille, L., et al., Using ecological niche models to infer the distribution and population size of parakeets in New Caledonia, Biol. Conserv., 2013, vol. 167, pp. 149–160.

    Article  Google Scholar 

  23. Vanderwal, J., Shoo, L.P., Graham, C., and Williams, S.E., Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?, Ecol. Model., 2009, vol. 220, pp. 589–594.

    Article  Google Scholar 

  24. Warren, D.L. and Seifert, S.N., Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria, Ecol. Appl., 2011, vol. 21, pp. 335–342.

    Article  PubMed  Google Scholar 

  25. Nakazato, T., Warren, D.L., Moyle, L.C., Ecological and geographic modes of species divergence in wild tomatoes, Am. J. Bot., 2010, vol. 97, pp. 680–693.

    Article  PubMed  Google Scholar 

  26. Naderi, M., Kaboli, M., Ahmadi, M., and Kryštufek, B., Fat dormouse (Glis glis L.) distribution modeling in the Hyrcanian relict forests of Northern Iran, Pol. J. Ecol., 2016, vol. 64, pp.136–142.

    Article  Google Scholar 

  27. Mech, L.D. and Boitani, L., Wolf social ecology, in Wolves: Behavior, Ecology and Conservation, Chicago, IL: Univ. of Chicago Press, 2003, pp. 1–34.

    Chapter  Google Scholar 

  28. Treves, A., Martin, K.A., Wydeven, A.P., and Wiedenhoeft, J.E., Forecasting environmental hazards and the application of risk maps to predator attacks on livestock, BioScience, 2011, vol. 61, pp. 451–458.

    Article  Google Scholar 

  29. Rich, L.N., Mitchell, M.S., Gude, J.A., and Sime, C.A., Anthropogenic mortality, intraspecific competition, and prey availability influence territory sizes of wolves in Montana, J. Mammal., 2012, vol. 93, pp. 722–731.

    Article  Google Scholar 

  30. Ziaie, H., A Field Guide to the Mammals of Iran, Tehran, Iran: Iranian Wildlife Center, 2008 (in Persian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alizadeh Shabani.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safavian, S., Alizadeh Shabani, A., Imani Harsini, J. et al. Factors Affecting Predator-Prey Distribution in a Protected Area, Tehran, Iran (a Case with Wolves and Wild Sheep). Russ J Ecol 49, 172–179 (2018). https://doi.org/10.1134/S1067413618020121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413618020121

Keywords

Navigation