Skip to main content
Log in

The Effect of Magnetite Nanoparticles and Bacteria on the Activity of NADPH-Oxidase and Myeloperoxidase in Neutrophils of Human Blood

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Differences in the oxygen-dependent reactions of neutrophil granulocytes (NGs) depending on the nature of the agent affecting the cells were revealed. In vitro magnetite nanoparticles (MNPs) cause suppression of the NADPH–oxidase activity of NGs, which manifests itself in falling rates of reactions (NBT test) both with the effect of MNPs on NGs alone and a combined effect (MNPs and zymosan), as well as in the reduction of the index of activation (IA) and functional reserve of neutrophils (FRN). However, the introduction of MNPs dose-dependently stimulates the activity of myeloperoxidase (MPO). Gram-positive (S. aureus 2879 M) and gram-negative (E. coli 321) bacteria caused a respiratory burst of neutrophils, which manifested itself in a significant increase in the number of NBT-positive cells in single and combined influences (bacteria and zymosan). The lack of differences in the reaction of cells on opsonized and nonopsonized bacteria and the decrease in IA and FRN suggest that NGs are at the maximum level of functionality. Both strains of bacteria caused activation of the MPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abakumova, T.V., Antoneeva, I.I., Gening, T.P., Dolgova, D.R., and Gening, S.O., The phenotype of peripheral blood neutrophils during the early stage of endometrial cancer, Cell Tissue Biol., 2016, vol. 10, no. 3, pp. 206–212.

    Article  Google Scholar 

  • Astaldi, G. and Verga, L., The glycogen content of the cells of lymphatic leukaemia, Acta Haematol., 1957, vol. 17, pp. 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Barycheva, L.Yu., Erdni-Goryaeva, N.E., and Aleksandrovich, G.A., Neutrophil granulocyte functional status and expression of apoptosis markers in children with type 1 diabetes, Sakh. Diabet, 2014, vol. 3, pp. 77–82.

    Google Scholar 

  • Bazarnyi, V.V., Tikhonina, E.N., and Kondrashov, K.V., Determination of myeloperoxidase neutrophils in the surgical treatment of coronary heart disease, Klin. Lab. Diagn., 2012, vol. 7, pp. 8–10.

    Google Scholar 

  • Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A., Neutrophil extracellular traps kill bacteria, Science, 2004, vol. 303, pp. 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Zhang, C., Luo, R., Liu, H., Zhang, Z., Xu, T., Zhang, Y., and Wang, D., Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles, Int. J. Nanomed., 2016, vol. 11, pp. 5671–5682.

    Article  CAS  Google Scholar 

  • De Buhr, N. and von Köckritz-Blickwede, M., How neutrophil extracellular traps become visible, J. Immunol. Res., 2016. doi 10.1155/2016/4604713

    Google Scholar 

  • Dontsov, V.I., Krutko, V.N., Mrikaev, B.M., and Ukhanov, S.V., Reactive oxygen species as a system: significance in physiology, pathology and natural aging, Trudy ISA RAN, 2006, vol. 19, pp. 50–69.

    Google Scholar 

  • Fang, H., Jiang, W., Cheng, J., Lu, Y., Liu, A., Kan, L., and Dahmen, U., Balancing innate immunity and inflammatory state via modulation of neutrophil function: a novel strategy to fight sepsis, J. Immunol. Res., 2015. doi 10.1155/2015/187048

    Google Scholar 

  • Gamaley, I.A. and Klyubin, I.V., Hydrogen peroxide as a signal molecule, Tsitologiia, 1996, vol. 38, no. 12, pp. 123–124.

    Google Scholar 

  • German, S.V., Inozemtseva, O.A., Navolokin, N.A., Pudovkina, E.E., Zuev, V.V., Volkova, E.K., Bucharskaya, A.B., Pleskova, S.N., Maslyakova, G.N., and Gorin, D.A., Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using mri and morphological investigation, Nanotekhnol. Russia, 2013, vol. 8, nos. 7–8, pp. 573–580.

    Article  Google Scholar 

  • Gonçalves, D.M., de Liz, R., and Girard, D., Activation of neutrophils by nanoparticles, Sci. World J., 2011, vol. 11, pp. 1877–1885.

    Article  Google Scholar 

  • Guldris, N., Argibay, B., Gallo, J., Iglesias-Rey, R., Carby-Argibay, E., Kolen’ko, Y.V., Campos, F., Sobrino, T., Salonen, L.M., Bacobre-Lypez, M., Castillo, J., and Rivas, J., Magnetite nanoparticles for stem cell labeling with high efficiency and long-term in vivo tracking, Bioconjug. Chem., 2017, vol. 28, pp. 362–370.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, J., Knopf, J., Maueröder, C., Kienhöfer, D., Leppkes, M., and Herrmann, M., Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation, Clin. Exp. Rheumatol., 2016, vol. 34, pp. 6–8.

    PubMed  Google Scholar 

  • Jiang, Y., Liu, S., Zhang, Y., Li, H., He, H., Dai, J., Jiang, T., Ji, W., Geng, D., Elzatahry, A.A., Alghamdi, A., Fu, D., Deng, Y., and Zhao, D., Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe, Biomaterials, 2017, vol. 115, pp. 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Jirakova, K., Seneklova, M., Jirak, D., Turnovcova, K., Vosmanska, M., Babic, M., Horák, D., Veverka, P., and Jendelova, P., The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cellderived neural precursors, Int. J. Nanomed., 2016, vol. 11, pp. 6267–6281.

    Article  CAS  Google Scholar 

  • Kannengiesser, C., Gйrard, B., El Benna, J., Henri, D., Kroviarski, Y., Chollet-Martin, S., Gougerot-Pocidalo, M.A., Elbim, C., and Grandchamp, B., Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: identification of 31 novel mutations, Hum. Mutat., 2008, vol. 29, pp. E132–E149.

    Article  PubMed  Google Scholar 

  • Kaplow, L.S., A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow, Blood, 1955, vol. 10, pp. 1023–1029.

    CAS  PubMed  Google Scholar 

  • Kim, S.H., Oh, S.N., Choi, H.S., Lee, H.S., Jun, J., Nam, Y., Lee, S.H., Lee, J.K., and Lee, H.G., USPIO enhanced lymph node MRI using 3D multi-echo GRE in a rabbit model, Contrast. Media. Mol. Imaging, 2016, vol. 11, pp. 544–549.

    Article  CAS  PubMed  Google Scholar 

  • Kondrashova, N.M., Plekhova, N.G., Zavorueva, D.V., Somova, L.M., Geltser, B.I., and Kostyushko, A.V., Cellular factors of local protection under community acquired pneumonia, Tsitologiia, 2010, vol. 52, no. 7, pp. 588–596.

    CAS  PubMed  Google Scholar 

  • Malekzadeh, A.M., Ramazani, A., Rezaei, S.J.T., and Niknejad, H., Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy, J. Colloid Interface Sci., 2017, vol. 490, pp. 64–73.

    Article  Google Scholar 

  • Mayanskii, A.N. and Pikuza, O.I., Klinicheskie aspekty fagotsitoza (The Clinical Aspects of Phagocytosis), Kazan: Magarif, 1993.

    Google Scholar 

  • Mayanskii, A.N., Patogeneticheskaya mikrobiologiya (Pathogenic Microbiology), Nizhny Novgorod: Izd. Nizhegorod. Med. Akad., 2006.

    Google Scholar 

  • Moutsopoulos, N.M., Konkel, J., Sarmadi, M., Eskan, M.A., Wild, T., Dutzan, N., Abusleme, L., Zenobia, C., Hosur, K.B., Abe, T., Uzel, G., Chen, W., Chavakis, T., Holland, S.M., and Hajishengallis, G., Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss, Sci. Transl. Med., 2014, vol. 6, pp. 229–240.

    Article  Google Scholar 

  • Odobasic, D., Kitching, R., and Holdsworth, S.R., Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase, J. Immunol. Res., 2016. doi 10.1155/2016/2349817

    Google Scholar 

  • Pleskova, S.N. and Mikheeva, E.R., Modulation of oxygen-dependent and oxygen-independent metabolism of neutrophil granulocytes by quantum dots, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 452–454.

    Article  Google Scholar 

  • Pleskova, S.N., Gorshkova, E.N., Mikheeva, E.R., and Shushunov, A.N., Study of biocompatibility of nanoparticles with Er/Yb fluorescent centers in system with neutrophil granulocytes, Cell Tissue Biol., 2011, vol. 5, no. 4, pp. 332–338.

    Article  Google Scholar 

  • Pleskova, S.N., Gorshkova, E.N., Novikov, V.V., and Solioz, M., Treatment by serum up-conversion nanoparticles in the fluoride matrix changes the mechanism of cell death and the elasticity of the membrane, Micron, 2016, vol. 90, pp. 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Podosinnikov, I.S., Nilova, L.G., Babichenko, I.V., Turina, O.P., and Ponomareva, V.N., Method for determining the chemotactic activity of leukocytes, Lab. Delo, 1981, vol. 8, pp. 468–470.

    Google Scholar 

  • Schreiber, A. and Kettritz, R., The neutrophil in antineutrophil cytoplasmic autoantibody-associated vasculitis, J. Leukocyte Biol., 2013, vol. 94, pp. 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Shvydchenko, I.N. and Nesterova, I.V., Neutrophilic granulocytes and Helicobacter pylori-associated peptic ulcer disease, Kuban. Nauch. Med. Vestn., 2006, vol. 7–8, pp. 181–186.

    Google Scholar 

  • Subramanian, K.K. and Luo, H.R., Non-classical Roles of NADPH-oxidase dependent reactive oxygen species in phagocytes, in Handbook of Granulocytes: Classification, Toxic Materials Produced and Pathology, New York: Nova Science Publishers, 2009, pp. 127–154.

    Google Scholar 

  • Vlasova, I.I., Kapralov, A.A., Michael, Z.P., Burkert, S.C., Shurin, M.R., Star, A., Shvedova, A.A., and Kagan, V.E., Enzymatic oxidative biodegradation of nanoparticles: mechanisms, significance and applications, Toxicol. Appl. Pharmacol., 2016, vol. 299, pp. 58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C.-W., Strong, B.S.I., Miller, M.J., and Unanue, E.R., Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants, J. Immunol., 2010, vol. 185, pp. 2927–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Pleskova.

Additional information

Original Russian Text © S.N. Pleskova, E.R. Mikheeva, E.V. Razumkova, E.E. Gornostaeva, 2017, published in Tsitologiya, 2017, Vol. 59, No. 12, pp. 867–873.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleskova, S.N., Mikheeva, E.R., Razumkova, E.V. et al. The Effect of Magnetite Nanoparticles and Bacteria on the Activity of NADPH-Oxidase and Myeloperoxidase in Neutrophils of Human Blood. Cell Tiss. Biol. 12, 120–126 (2018). https://doi.org/10.1134/S1990519X18020074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18020074

Keywords

Navigation