Skip to main content
Log in

Theoretical Study of the Effect of Simultaneous Doping with Silicon, on Structure and Electronic Properties of Adamantane

  • Structure of Chemical Compounds Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, structural and electronic properties of adamantane (C10H16) and its Si-doped derivatives were calculated using density functional theory. In order to find diamondoids with specific properties, one to ten carbon atoms of adamantane were substituted with silicon atoms and the changes in structural and electronic properties of adamantane after substituting were investigated. HOMO-LUMO energies of 1–10 Si-doped adamantane and their gaps were calculated and the parameters that affect on the energy gaps of Si-doped structures were introduced. Among the doped molecules, 4-Si doped adamantane with high symmetry structure shows distinct properties. Adiabatic electron affinity and ionization potentials were calculated using Gibbs free energies of cationic and anionic forms of all structures. The results show that the electron affinity of adamantane is negative and reduces to positive values by simultaneous C/Si doping in 7–10-sila-doped adamantane. These results show the vacuum level transfer from above to below the conduction band. NBO charge analyses were also applied for describing the electron affinity and Ionization potential results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pozuelo, Y. W. Chang, and J. M. Yang, Mater. Sci. Eng. 633, 200 (2015).

    Article  CAS  Google Scholar 

  2. G. A. Mansoori, Advances in Chemical Physics (Wiley, Chichester, 2008), p. 207.

    Book  Google Scholar 

  3. G. A. Mansoori, P. L. B. de Araujo, and E. S. de Araujo, Diamondoid Molecules with Applications in Biomedicine, Materials Science, Nanotechnology and Petroleum Science (World Scientific, Haekensaek, NJ, 2012).

    Book  Google Scholar 

  4. G. P. Zhang, T. F. George, L. Assoufid, et al., Phys. Rev. B 75, 0354131 (2007).

    Google Scholar 

  5. G. C. MeIntosh, M. Yoon, S. Berber, et al., Phys. Rev. B 70, 045401 (2004).

    Article  CAS  Google Scholar 

  6. N. D. Drummond, A. J. Williamson, R. J. Needs, et al., Phys. Rev. Lett. 95, 096801 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Q.-S. Li, X.-J. Feng, Y. Xie, et al., J. Phys. Chem. A 109, 1454 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. F. Marsusi, K. Mirabbaszadeh, and G. Ali Mansoori, Phys. E (Amsterdam, Neth.) 41, 1151 (2009).

    Article  CAS  Google Scholar 

  9. A. A. Fokin, T. S. Zhuk, A. E. Pashenko, et al., Org. Lett. 11, 3068 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. M. Hamadanian, B. Khoshnevisan, and F. K. Fotooh, J. Mol. Struet. 961, 48 (2010).

    Article  CAS  Google Scholar 

  11. Y. Xue and G. A. Mansoori, Int. J. Mol. Sci. 11, 288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. C. Gareia, J. F. Justo, W. V. M. Machado, et al., Diamond Relat. Mater. 19, 837 (2010).

    Article  CAS  Google Scholar 

  13. T. Rander, M. Staiger, R. Richter, et al., J. Chem. Phys. 138, 024310 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. F. Maria, Nanotechnology 25, 365601 (2014).

    Article  CAS  Google Scholar 

  15. A. Bibek and F. Maria, Nanotechnology 26, 035701 (2015).

    Article  CAS  Google Scholar 

  16. J. Fischer, J. Baumgartner, and C. Marschner, Science (Washington, DC, U. S.) 310, 825 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. F. Pichierri, Chem. Phys. Lett. 421, 319 (2006).

    Article  CAS  Google Scholar 

  18. F. Iori, S. Ossieini, Phys. E (Amsterdam, Neth.) 41, 939 (2009).

    Article  CAS  Google Scholar 

  19. W. D. S. A. Miranda, S. S. Coutinho, M. S. Tavares, et al., J. Mol. Struet. 1122, 299 (2016).

    Article  CAS  Google Scholar 

  20. A. D. Beeke, J. Chem. Phys. 98, 5648 (1993).

    Article  Google Scholar 

  21. M. J. Frisch, G. W. Trueks, H. B. Schlegel, et al., Gaussian 03, Revision A.1 (Gaussian Inc., Wallingford, CT, USA, 2003).

    Google Scholar 

  22. R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 Semichem Inc., Shawnee Mission, KS, 2009).

    Google Scholar 

  23. S. P. Kampermann, T. M. Sabine, B. M. Craven, et al., Acta Crystallogr. A 51, 489 (1995).

    Article  PubMed  Google Scholar 

  24. W. Nowacki and K. W. Hedberg, J. Am. Chem. Soe. 70, 1497 (1948).

    Article  CAS  Google Scholar 

  25. V. Vijayakumar, B. G. Alka, B. K. Godwal, et al., J. Phys.: Condens. Matter 13, 1961 (2001).

    CAS  Google Scholar 

  26. A. Rastkar, J. Azamat, J. J. Sardroodi, et al., J. Comput. Theor. Nanosei. 12, 1882 (2015).

    Article  CAS  Google Scholar 

  27. K. Lenzke, L. Landt, M. Hoener, et al., J. Chem. Phys. 127, 084320 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Forough Kalantari Fotooh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotooh, F.K., Atashparvar, M. Theoretical Study of the Effect of Simultaneous Doping with Silicon, on Structure and Electronic Properties of Adamantane. Russ. J. Phys. Chem. B 13, 1–8 (2019). https://doi.org/10.1134/S1990793119010202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119010202

Keywords

Navigation