Skip to main content
Log in

Thermal Analysis of Detonation Nanodiamonds

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The thermal treatment of detonation nanodiamonds samples has been performed using synchronous thermal analysis in an argon flow at atmospheric pressure and 600, 800, 1000, 1200, and 1500°C with heating rates of 2 and 10°C/min. X-ray phase analysis of the stored samples shows the thermal stability of some nanodiamond particles up to 1500°C. An electron microscopic investigation of the heat-treated samples shows the effect of the heating rate on the properties of the detonation nanodiamonds powder. Phase changes in detonation nanodiamonds begin in the temperature range of 600–700°C, while the graphitization of diamond nanoparticles synthesized by detonation occurs at temperatures above 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Shevchenko and V. A. Gorbachev, “Prospects of industrial production of detonation nanocarbon,” in Proceedings of the International Conference on Industrial Utilization of Weapons, Special Equipment, and Ammunition (ITERPOLITEKh-2012, Moscow, 2012), pp. 335–343.

    Google Scholar 

  2. V. V. Danilenko, Explosive Synthesis and Sintering of Diamonds (Energoatomizdat, Moscow, 2003) [in Russian].

    Google Scholar 

  3. A. L. Vereshchagina, Detonation Nanodiamonds (Altaisk. Gos. Tekh. Univ., Barnaul, 2001) [in Russian].

    Google Scholar 

  4. V. Yu. Dolmatov, “Detonation synthesis ultradispersed diamonds: Properties and applications,” Russ. Chem. Rev. 70, 607 (2001).

    Google Scholar 

  5. A. L. Vereshchagin, “The initial stages of carbon genesis in the universe,” Polzunov. Vestn., No. 4, 30–33 (2004).

    Google Scholar 

  6. J. M. Rosenholm, I. I. Vlasov, S. A. Burikov, T. A. Dolenko, and O. A. Shenderova, “Nanodiamond-based composite structures for biomedical imaging and drug delivery,” J. Nanosci. Nanotechnol. 15, 959–971 (2015).

    Article  Google Scholar 

  7. M. Come, V. Pichot, B. Siegert, and D. Spitzer, “Use of nanodiamonds as a reducing agent in a chloratebased energetic composition,” Propellants, Explos., Pyrotech. 34, 166–173 (2009).

    Article  Google Scholar 

  8. E. N. Galashov, A. A. Yusuf, and E. M. Mandrik, “Cu/synthetic and impact-diamond composite heatconducting substrates,” J. Phys.: Conf. Ser. 690, 012043 (2016).

    Google Scholar 

  9. A. P. Koshcheev, “Thermodesorption mass spectrometry in the light of solving the problem of certification and unification of the surface properties of detonation nanodiamonds,” Ross. Khim. Zh. 52 (5), 88–96 (2008).

    Google Scholar 

  10. N. S. Xu, J. Chen, and S. Z. Deng, “Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient,” Diamond Relat. Mater. 11, 249–256 (2002).

    Article  Google Scholar 

  11. J. Chen, S. Z. Deng, J. Chen, Z. X. Yu, and N. S. Xua, “Graphitization of nanodiamond powder annealed in argon ambient,” Appl. Phys. Lett. 74, 3651–3653 (1999).

    Article  Google Scholar 

  12. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, V. Yu. Davydov, and Yu. A. Pevtsova, “Diamondgraphite phase transition in ultradisperse diamond clusters,” Phys. Solid Stat. 39, 1007 (1997).

    Article  Google Scholar 

  13. V. A. Popov, A. V. Egorov, S. V. Savilov, V. V. Lunin, A. N. Kirichenko, V. N. Denisov, V. D. Blank, O. M. Vyaselev, and T. B. Sagalova, “Features of the transformation of detonation nanodiamonds into onion-like carbon nanoparticles,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 7, 1034–1043 (2013).

    Article  Google Scholar 

  14. V. A. Plotnikov, S. V. Makarov, D. G. Bogdanov, M. S. Zhukovskii, Dzh. Vanchinkkhuu, and S. A. Beznosyuk, “Biocompatible impurity subsystem of detonation nanodiamond,” Fundam. Probl. Sovrem. Materialoved. 8 (4), 54–59 (2011).

    Google Scholar 

  15. V. P. Efremov, E. I. Zakatilova, I. V. Maklashova, and N. V. Shevchenko, “Properties of detonation nanodiamonds at elevated temperatures,” Konstrukts. Kompozits. Mater., No. 2, 48–53 (2016).

    Google Scholar 

  16. V. P. Efremov and E. I. Zakatilova, “The analysis of thermal stability of detonation nanodiamond,” J. Phys.: Conf. Ser. 774, 012014 (2016).

    Google Scholar 

  17. V. R. Howes, “The graphitization of diamond,” Proc. Phys. Soc. 8, 648–662 (1962).

    Article  Google Scholar 

  18. S. A. Gubin, I. V. Maklashova, and E. I. Dzhelilova, “On the effect of size, shape, and internal structure on phase equilibrium in graphite and diamond nanocrystallites,” Nanotechnol. Russ. 10, 18–24 (2015).

    Article  Google Scholar 

  19. O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, “Carbon nanostructures,” Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002).

    Article  Google Scholar 

  20. Q. Zou, M. Z. Wang, Y. G. Li, B. Lv, and Y. C. Zhao, “HRTEM and Raman characterization of the onionlike carbon synthesized by annealing detonation nanodiamond at lower temperature and vacuum,” J. Exp. Nanosci. 5, 473–487(2010).

    Google Scholar 

  21. F. Tuinstra and J. L. Koening, “Raman spectrum of graphite,” J. Chem. Chem. Phys. 53, 1126–1130 (1970).

    Article  Google Scholar 

  22. S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1, 1687–1698 (1970).

    Article  Google Scholar 

  23. D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T. W. Clyne, and G. A. J. Amaratunga, “Characterisation of carbon nano-onions using Raman spectroscopy,” Chem. Phys. Lett. 373, 52–56 (2003).

    Article  Google Scholar 

  24. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).

    Article  Google Scholar 

  25. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, and V. I. Siklitskii, “Structure of diamond nanocluster,” Phys. Solid Stat. 41, 668 (1999).

    Article  Google Scholar 

  26. M. Frenklach, “Monte Carlo simulation of hydrogen reactions with the diamond surface,” Phys. Rev. B 45, 9435–9438 (1992).

    Article  Google Scholar 

  27. M. Eckert, E. Neyts, and A. Bogaerts, “Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges,” Cryst. Growth Des. 10, 4123–4134 (2010).

    Article  Google Scholar 

  28. C. Pantea, J. Qian, G. A. Voronin, and T. W. Zerda, “High pressure study of graphitization of diamond crystals,” J. Appl. Phys. 91, 1957–1962 (2002).

    Article  Google Scholar 

  29. M. M. Sibiryakov, S. A. Kuz’min, P. P. Sharin, and P. P. Tarasov, “Study of natural diamond graphitization at high temperatures in vacuum,” Aktual. Probl. Guman. Estestv. Nauk, Nos. 3–4, 98–102 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Maklashova.

Additional information

Original Russian Text © V.P. Efremov, E.I. Zakatilova, I.V. Maklashova, N.V. Shevchenko, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, V.P., Zakatilova, E.I., Maklashova, I.V. et al. Thermal Analysis of Detonation Nanodiamonds. Nanotechnol Russia 13, 11–17 (2018). https://doi.org/10.1134/S1995078018010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018010044

Navigation