Skip to main content
Log in

Temperature responses of Ceriodaphnia quadrangula (O.F. Müller, 1785) (Anomopoda) from the littoral of the Rybinsk Reservoir

  • Biology, Morphology, and Systematics of Hydrobionts
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Experiments have been conducted to determine the final preferred temperature (FPT) and avoided temperatures in cladoceran Ceriodaphnia quadrangular (O. F. Müller, 1785) from the littoral of the Rybinsk Reservoir. The graphic method is used to analyze the experimental data. In the study during the vegetation season the following parameters are determined: range of selected (preferred) temperatures (17.4–26.5°C) corresponding to the optimum temperatures for growth and development of cladocerans in the waterbodies, the temperature zone of normal vital activity (13.0–27.0°C), ranges of avoidance temperatures (6.0–13.0°C and >27.0°C), and lethal temperatures (<6.0 and >33.0°C). The possible reasons and mechanisms of temperature responses in cladocerans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verbitskii, V.B. and Verbitskaya, T.I., Final thermal preference in parthenogenetic females of Daphnia magna Straus (Crustacea: Cladocera) acclimated to various temperatures, Biol. Bull. (Moscow), 2011, vol. 38, no. 5, pp. 493–499.

    Article  Google Scholar 

  2. Verbitskii, V.B. and Verbitskaya, T.I., Thermal preference and avoidance in cladoceran Daphnia magna Strauss (Crustacea, Cladocera) acclimated to constant temperature, Biol. Bull. (Moscow), 2012, vol. 39, no. 1, pp. 93–98.

    Article  Google Scholar 

  3. Verbitsky, V.B., Verbitskaya, T.I., and Malysheva, O.A., The influence of various temperature regimes on the abundance dynamics and thermal tolerance of cladoceran Ceriodaphnia quadrangular (O.F. Müller, 1785), Inland Water Biol., 2009, vol. 2, no. 1, pp. 67–71.

    Article  Google Scholar 

  4. Kozlova, I.V., On the biology of common species of crustaceans of different types of lakes of the Middle Urals, Tr. Ural. Otd. Sib. NII Ryb. Khoz., 1975, vol. 9, pp. 65–74.

    Google Scholar 

  5. Lyubimova, T.S., On the biology of common planktonic crustacean species of the mountain lake Arakul’ in Southern Urals, Sb. Nauch. Tr. Ural. Otd. Gos. NII Ozer. Rech. Ryb. Khoz., 1979, no. 10, pp. 125–137.

    Google Scholar 

  6. Manuilova, E.F., The role of the number of bacteria in the development of cladocerans in natural conditions, Dokl. Akad. Nauk SSSR, 1958, vol. 120, no. 5, pp. 1129–1132.

    Google Scholar 

  7. Pidgaiko, M.L., Zooplankton vodoemov Evropeiskoi chasti SSSR (Zooplankton of Water Bodies of the European Part of the USSR), Moscow: Nauka, 1984.

    Google Scholar 

  8. Allan, J.D., An analysis of seasonal dynamics of a mixed population of Daphnia, and the associated cladoceran community, Freshwater Biol., 1977, vol. 7, pp. 505–512.

    Article  Google Scholar 

  9. Anderson, D.H. and Benke, A.C., Growth and reproduction of the cladoceran Ceriodaphnia dubia from a forested floodplain swamp, Limnol., Oceanogr, 1994, vol. 39, pp. 1517–1527.

    Article  Google Scholar 

  10. Angilletta, M.J., Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford: Oxford Univ. Press, 2009.

    Book  Google Scholar 

  11. Beitinger, T.L., Bennett, W.A., and McCauley, R.W., Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature, Environ. Biol. Fish, 2000, vol. 58, pp. 237–275.

    Article  Google Scholar 

  12. Bennett, A.F., The thermal dependence of lizard behavior, Anim. Behav., 1980, vol. 28, pp. 752–762.

    Article  Google Scholar 

  13. Burgis, M.J., A quantitative study of reproduction in some species of Ceriodaphnia (Crustacea: Cladocera), J. Anim. Ecol., 1967, vol. 36, pp. 61–75.

    Article  Google Scholar 

  14. Cowgill, U.M., Keating, K.I., and Takahashi, I.T., Fecundity and longevity of Ceriodaphnia dubia/affinis in relation to diet at different temperatures, J. Crust. Biol., 1985, vol. 5, pp. 420–429.

    Article  Google Scholar 

  15. Dawson, W., On the physiological significance of the preferred body temperatures of reptiles, in Perspectives in Biophysical Ecology, New York: Springer, 1975, pp. 443–473.

    Chapter  Google Scholar 

  16. Diaz, F., Sierra, E., Deniss, A., and Rodriguez, L., Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman), J. Therm. Biol., 2002, vol. 27, pp. 423–428.

    Article  Google Scholar 

  17. Hernandez, R.M. and Bückle, R.L.F., Thermal preference area for Macrobrachium tenellum in the context of global climatic change, J. Therm. Biol., 1997, vol. 22, nos. 4–5, pp. 309–313.

    Article  Google Scholar 

  18. Higgins, F.A., Bates, A.E., and Lamare, M.D., Heat tolerance, behavioural temperature selection and temperature-dependent respiration in larval Octopus huttoni, J. Therm. Biol., 2012, vol. 37, pp. 83–88.

    Article  Google Scholar 

  19. Huey, R.B., Temperature, physiology, and the ecology of reptiles, in Biology of the Reptilia. Physiology, London: Acad. Press, 1982, vol. 12, pp. 25–91.

    Google Scholar 

  20. Huey, R.B. and Bennett, A.F., Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards, Evolution, 1987, vol. 41, pp. 1098–1115.

    Article  Google Scholar 

  21. Geller, W. and Mtiller, H., The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity, Oecologia, 1981, vol. 49, pp. 316–321.

    Article  Google Scholar 

  22. Gulyas, P., The effect of temperature on the most frequent Cladocera and Copepoda species in Lake Velenge, Aquacultura Hungarica, 1980, vol. 2, pp. 55–70.

    Google Scholar 

  23. Jobling, M., Temperature tolerance and the final preferendum—rapid methods for the assessment of optimum growth temperatures, J. Fish. Biol., 1981, vol. 19, pp. 439–455.

    Article  Google Scholar 

  24. Kwick, J.K. and Carter, J.C.H., Population dynamics of limnetic Cladocera in a beaver pond, J. Fish. Res. Board Can., 1975, vol. 32, pp. 341–346.

    Article  Google Scholar 

  25. Lagerspetz, K.Y.H., Thermal avoidance and preference in Daphnia magna, J. Therm. Biol., 2000, vol. 25, pp. 405–410.

    Article  PubMed  Google Scholar 

  26. Lamkemeyer, T., Zeis, B., and Paul, R.J., Temperature acclimation influences temperature related behaviour as well as oxygen transport physiology and biochemistry in the water flea Daphnia magna, Can. J. Zool., 2003, vol. 81, pp. 237–249.

    Article  CAS  Google Scholar 

  27. Mortensen, A., Ugedal, O., and Lund, F., Seasonal variation in the temperature preference of Arctic charr (Salvelinus alpinus), J. Therm. Biol., 2007, vol. 32, pp. 314–332.

    Article  CAS  Google Scholar 

  28. Novakova, J., Development and growth of three species of the genus Ceriodaphnia, Rigor. Thesis, Prague, 1976.

    Google Scholar 

  29. Poole, G.C. and Berman, C.H., An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human caused degradation, Environ. Manage., 2001, vol. 27, pp. 787–802.

    Article  CAS  PubMed  Google Scholar 

  30. Pulgar, J., Bozinovic, F., and Ojeda, F., Local distribution and thermal ecology of two intertidal fishes, Ecophysiology, 2005, vol. 142, pp. 511–520.

    Google Scholar 

  31. Reynolds, W.W. and Casterlin, M.E., Behavioral thermoregulation and the “final preferendum” paradigm, Am. Zool., 1979, vol. 19, pp. 211–224.

    Google Scholar 

  32. Sokolova, I.M. and Portner, H.O., The role of thermal environment in stress adaptation and tolerance: integration of multiple stressors, J. Therm. Biol., 2007, vol. 32, pp. 117–178.

    Article  Google Scholar 

  33. Sunday, J., Bates, A.E., and Dulvy, N., Global analysis of thermal tolerance and latitude in ectotherms, Proc. Roy. Soc. London B., 2011, vol. 278, pp. 1823–1830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Verbitsky.

Additional information

Original Russian Text © V.B. Verbitsky, T.I. Verbitskaja, O.A. Malisheva, 2014, published in Biologiya Vnutrennikh Vod, 2014, No. 4, pp. 12–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, V.B., Verbitskaja, T.I. & Malisheva, O.A. Temperature responses of Ceriodaphnia quadrangula (O.F. Müller, 1785) (Anomopoda) from the littoral of the Rybinsk Reservoir. Inland Water Biol 7, 313–317 (2014). https://doi.org/10.1134/S1995082914040178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082914040178

Keywords

Navigation