Skip to main content
Log in

Silicate coatings on titanium modified by cobalt and/or copper oxides and their activity in CO oxidation

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

SiO2 + TiO2/Ti composites have been formed by plasma electrolytic oxidation (PEO) of titanium in alkaline aqueous solution of sodium silicate. By modifying them using impregnation in nitrate solutions followed by annealing, the oxide composites Co3O4/SiO2 + TiO2/Ti, CuO/SiO2 + TiO2/Ti, and Co3O4 + CuO/SiO2 + TiO2/Ti have been obtained. The latter composites were tested in the model reaction of CO oxidation into CO2. The activation energy has been calculated: for the initial composites, it is equal to 42.6 kJ/mol, whereas, for the composites modified by cobalt oxide, copper oxide, and cobalt/copper oxides, it is equal to 141.8, 86.9, and 97.8 kJ/mol, respectively. The surface morphology and the composition of coatings have been investigated by the methods of scanning electron microscopy, X-ray spectral microprobe analysis, and X-ray photoelectron spectroscopy. Surface morphological structures with the highest concentrations of transition metals, which could serve as catalytically active sites, have been determined: “flakes” (Co3O4), “grains’” (CuO), and “hedgehogs” (Co3O4 +CuO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelov, S., Mehandjiev, D., Piperov, B., et al., Appl. Catal., 1985, vol. 16, no. 3, pp. 431–437.

    Article  Google Scholar 

  2. Zav’yalova, U.F., Tret’yakov, V.F., Burdeinaya, T.N., et al., Pet. Chem., 2005, vol. 45, no. 4, pp. 255–260.

    Google Scholar 

  3. Zhu, J. and Gao, Q., Microporous Mesoporous Mater., 2009, vol. 124, pp. 144–152.

    Article  Google Scholar 

  4. Vodyankin, A.Y., Kurina, L.N., and Shilyaeva, L.P., Russ. J. Appl. Chem., 1999, vol. 72, no. 6, pp. 1079–1080.

    Google Scholar 

  5. Kolotilov, S.V., Gavrilenko, K.S., Kantserova, M.R., et al., Theor. Exp. Chem., 2005, vol. 41, no. 6, pp. 347–351.

    Article  Google Scholar 

  6. Baker, J.E., Burch, R., Hibble, S.J., and Loader, P.K., Appl. Catal., 1990, vol. 65, no. 2, pp. 281–292.

    Article  Google Scholar 

  7. Courty, P., Durand, D., Freund, E., and Sugier, A., J. Mol. Catal., 1982, vol. 17, nos. 2–3, pp. 241–254.

    Article  Google Scholar 

  8. Su, J.J., Mao, W., Xu, X.C., et al., AIChE J., 2014, vol. 60, no. 5, pp. 1797–1809.

    Article  Google Scholar 

  9. Formasary, G., Gusi, S., Trifiro, F., and Vaccary, A., Ind. Eng. Chem. Res., 1987, vol. 26, no. 8, pp. 1500–1505.

    Article  Google Scholar 

  10. Zavyalova, U., Nigrovski, B., Pollok, K., et al., Appl. Catal., B, 2008, vol. 83, pp. 221–228.

    Article  Google Scholar 

  11. Lojewska, J., Kolodziej, A., Kapica, R., et al., Catal. Today, 2009, vol. 147, pp. S94–S98.

    Article  Google Scholar 

  12. Galvez, M.E., Ascaso, S., Moliner, R., et al., Top. Catal., 2013, vol. 56, nos. 1–8, pp. 493–498.

    Article  Google Scholar 

  13. Zabuga, V.Y., Tsapyuk, G.G., Ishchenko, O.V., et al., J. Superhard Mater., 2011, vol. 33, no. 5, pp. 315–319.

    Article  Google Scholar 

  14. Stoyanova, D., Christova, M., Dimitrova, P., et al., Appl. Catal., B, 1998, vol. 17, no. 3, pp. 233–244.

    Article  Google Scholar 

  15. Wojciechowska, M., Zielinski, M., Malczewska, A., et al., Appl. Catal., A, 2006, vol. 298, pp. 225–231.

    Article  Google Scholar 

  16. Li, D.B., Liu, X.H., Zhang, Q.H., et al., Catal. Lett., 2009, vol. 127, nos. 3–4, pp. 377–385.

    Article  Google Scholar 

  17. Fierro, G., Lo Jacono, M., Inversi, M., et al., Top. Catal., 2000, vol. 10, pp. 39–48.

    Article  Google Scholar 

  18. Sadykov, V.A., Pavlova, S.N., Bunina, R.V., et al., Kinet. Catal., 2005, vol. 46, no. 2, pp. 227–250.

    Article  Google Scholar 

  19. Popova, N.M., Katalizatory ochistki gazovykh vybrosov promyshlennykh proizvodstv (Catalysts for Purification of Exhaust Gases from Industrial Plants) Moscow: Khimiya, 1991.

    Google Scholar 

  20. Avila, P., Montes, M., and Miro, E.E., Chem. Eng. J., 2005, vol. 109, nos. 1–3, pp. 11–36.

    Article  Google Scholar 

  21. Kuzmina, R.I. and Sevost’yanov, V.P., Russ. Chem. J., 2000, vol. 44, no. 1, pp. 71–76.

    Google Scholar 

  22. Freund, H.J., Surf. Sci., 2007, vol. 601, pp. 1438–1442.

    Article  Google Scholar 

  23. Hönicke, D., Appl. Catal., 1983, vol. 5, no. 2, pp. 179–198.

    Article  Google Scholar 

  24. Ganley, J.C., Riechmann, K.L., and Seebauer, E.G., J. Catal., 2004, vol. 227, no. 1, pp. 26–32.

    Article  Google Scholar 

  25. Tikhov, S.F., Chernykh, G.V., Sadykov, V.A., et al., Catal. Today, 1999, vol. 53, no. 4, pp. 639–646.

    Article  Google Scholar 

  26. Lebukhova, N.V., Rudnev, V.S., Chigrin, P.G., et al., Surf. Coat. Technol., 2013, vol. 231, pp. 144–148.

    Article  Google Scholar 

  27. Walsh, F.C., Low, C.T.J., Wood, R.J.K., et al., Trans. Inst. Met. Finish., 2009, vol. 87, no. 3, pp. 122–135.

    Article  Google Scholar 

  28. Jiang, B.L. and Wang, Y.M., Plasma electrolytic oxidation treatment of aluminium and titanium alloys, in Surface Engineering of Light Alloys, Dong, H., Ed., Oxford: Wood-Head, 2010, pp. 110–154.

    Chapter  Google Scholar 

  29. Rudnev, V.S., Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 3, pp. 263–272.

    Google Scholar 

  30. Curran, J.A. and Clyne, T.W., Acta Mater., 2006, vol. 54, no. 7, pp. 1985–1993.

    Article  Google Scholar 

  31. Vasilyeva, M.S., Rudnev, V.S., Ustinov, A.Yu., et al., Appl. Surf. Sci., 2010, vol. 257, no. 4, pp. 1239–1246.

    Article  Google Scholar 

  32. Ved’, M.V. and Sakhnenko, N.D., Korroz.: Mater., Zashch., 2007, no. 10, pp. 36–40.

    Google Scholar 

  33. El-Shobaky, H.G., Appl. Catal., A, 2004, vol. 278, no. 1, pp. 1–9.

    Article  Google Scholar 

  34. Lukiyanchuk, I.V., Chernykh, I.V., Rudnev, V.S., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, pp. 209–217.

    Article  Google Scholar 

  35. Grilikhes, S.Yu., Obezhirivanie, travlenie i polirovanie metallov (Metal Degreasing, Etching, and Polishing). Leningrad: Mashinostroenie, 1977.

    Google Scholar 

  36. Bobrov, N.N., Leonov, A.S., Belov, A.N., et al., Catal. Ind., 2005, no. 2, pp. 50–58.

    Google Scholar 

  37. Dul’nev, A.V., Efremov, V.N., Obysov, M.A., et al., Russ. J. Appl. Chem., 2004, vol. 77, no. 9, pp. 1491–1499.

    Article  Google Scholar 

  38. Vovna, V.I., Gnedenkov, S.V., Gordienko, P.S., et al., Russ. J. Electrochem., 1998, vol. 34, no. 10, pp. 1090–1093.

    Google Scholar 

  39. Rudnev, V.S., Vaganov-Vil’kins, A.A., Ustinov, A.Y., and Nedozorov, P.M., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 3, pp. 330–338.

    Article  Google Scholar 

  40. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., et al., Appl. Surf. Sci., 2011, vol. 257, no. 7, pp. 2717–2730.

    Article  Google Scholar 

  41. Espinós, J.P., Morales, J., Barranco, A., et al., J. Phys. Chem. B, 2002, vol. 106, no. 27, pp. 6921–6929.

    Article  Google Scholar 

  42. Satterfield, C.N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980.

    Google Scholar 

  43. Xu, L.P., Sithambaram, S., Zhang, Y.S., et al., Chem. Mater., 2009, vol. 21, no. 7, pp. 1253–1259.

    Article  Google Scholar 

  44. Jiang, X., Zhang, L., Wybornov, S., et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, pp. 4062–4066.

    Article  Google Scholar 

  45. Lukiyanchuk, I.V., Rudnev, V.S., Chernykh, I.V., et al., Surf. Coat. Technol., 2013, vol. 231, pp. 433–438.

    Article  Google Scholar 

  46. Patcas, F. and Krysmann, W., Appl. Catal., A, 2007, vol. 316, no. 2, pp. 240–249.

    Article  Google Scholar 

  47. Solov’ev, S.A. and Orlik, S.N., Kinet. Catal., 2009, vol. 50, no. 5, pp. 705–714.

    Article  Google Scholar 

  48. Jia, L., Guo, Y., Tran, T.P., et al., J. Chem. Eng. Jpn., 2012, vol. 45, no. 8, pp. 590–596.

    Article  Google Scholar 

  49. Smith, M.L., Campos, A., and Spivey, J.J., Catal. Today, 2012, vol. 182, no. 1, pp. 60–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lukiyanchuk.

Additional information

Original Russian Text © I.V. Lukiyanchuk, I.V. Chernykh, V.S. Rudnev, L.M. Tyrina, A.Yu. Ustinov, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 3, pp. 323–333.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukiyanchuk, I.V., Chernykh, I.V., Rudnev, V.S. et al. Silicate coatings on titanium modified by cobalt and/or copper oxides and their activity in CO oxidation. Prot Met Phys Chem Surf 51, 448–457 (2015). https://doi.org/10.1134/S207020511503017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511503017X

Keywords

Navigation