Skip to main content
Log in

Extended Grimus–Stockinger theorem and inverse-square law violation in quantum field theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study corrections to the Grimus–Stockinger theorem dealing with the large-distance asymptotic behavior of the external wave-packet modified neutrino propagator within the framework of a field-theoretical description of the neutrino-oscillation phenomenon. The possibility is discussed that these corrections, responsible for breakdown of the classical inverse-square law (ISL), can lead to measurable effects at small but macroscopic distances accessible in the SBL (anti)neutrino experiments and in particular can provide an explanation of the well-known reactor antineutrino anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is assumed implicitly that the function Φ along with its first to third derivatives are absolutely integrable and, moreover, that Φ is a rotation-invariant function; the latter property will be implied from here on. It is also pertinent to note that, as can be seen from the subsequent calculations, the remainder term in Eq. (3) is actually , not .

  2. More accurately, and are the supports of the products of the one-particle distribution functions f a (p a ,x a ) of the in-particles a, expressed in terms of the most probable momenta p a and spatial coordinates, x a , of the centers of the external wave packets. It is supposed for simplicity that the functions f a are time-independent during the detection period, the devices and are finite and mutually disjoint within the space domain, and their effective spatial dimensions are small compared to the mean distance between them but very large compared to the effective dimensions (\({\sim}\sigma_{\varkappa}^{-1}\)) of all in and out wave packets moving inside and (see Ref. [30] for more details).

  3. As is shown in Ref. [30], the factor is not really the probability since it does not in general satisfy the unitarity relation. However, this fact is not essential in the context of the present study and this quantity can be referred to as the probability.

  4. A simple example of such a function at v∈supp(h) is

    $$h(v) = \exp \bigl\{ 4- (1-a\eta+a|v| )^{-2} \bigl[1- (1-a\eta +a|v| )^2 \bigr]^{-1} \bigr\} , $$

    where \(a=(1-1/\sqrt{2})/(\eta-\delta)>0\).

  5. We do not discuss the legitimacy of this interchange.

  6. A more definitive estimate is not feasible for the moment, considering that the function σ eff varies within wide limits over the phase spaces of the nuclear fission (\(\overline{\nu}_{e}\)-produced) processes in the power reactor and the inverse β-decay reaction in the detector.

References

  1. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, London, 2007)

    Book  Google Scholar 

  2. C. Giunti, C.W. Kim, J.A. Lee, U.W. Lee, Phys. Rev. D 48, 4310 (1993). arXiv:hep-ph/9305276 [hep-ph]

    Article  ADS  Google Scholar 

  3. W. Grimus, P. Stockinger, Phys. Rev. D 54, 3414 (1996). arXiv:hep-ph/9603430

    Article  ADS  Google Scholar 

  4. S. Mohanty, arXiv:hep-ph/9706328 (1997)

  5. C. Giunti, C.W. Kim, U.W. Lee, Phys. Lett. B 421, 237 (1998). arXiv:hep-ph/9709494

    Article  ADS  Google Scholar 

  6. J.E. Campagne, Phys. Lett. B 400, 135 (1997)

    Article  ADS  Google Scholar 

  7. K. Kiers, N. Weiss, Phys. Rev. D 57, 3091 (1998). arXiv:hep-ph/9710289

    Article  ADS  Google Scholar 

  8. M. Zrałek, Acta Phys. Pol. B 29, 3925 (1998). arXiv:hep-ph/9810543

    Google Scholar 

  9. A. Ioannisian, A. Pilaftsis, Phys. Rev. D 59, 053003 (1999). arXiv:hep-ph/9809503

    Article  ADS  Google Scholar 

  10. W. Grimus, P. Stockinger, S. Mohanty, Phys. Rev. D 59, 013011 (1999). arXiv:hep-ph/9807442

    Article  ADS  Google Scholar 

  11. W. Grimus, S. Mohanty, P. Stockinger, arXiv:hep-ph/9909341 (1999)

  12. W. Grimus, S. Mohanty, P. Stockinger, Phys. Rev. D 61, 033001 (2000). arXiv:hep-ph/9904285

    Article  ADS  Google Scholar 

  13. C.Y. Cardall, D.J.H. Chung, Phys. Rev. D 60, 073012 (1999). arXiv:hep-ph/9904291

    Article  ADS  Google Scholar 

  14. C.Y. Cardall, Phys. Rev. D 61, 073006 (2000). arXiv:hep-ph/9909332

    Article  ADS  Google Scholar 

  15. M. Beuthe, arXiv:hep-ph/0010054 (2000)

  16. M. Beuthe, Phys. Rep. 375, 105 (2003). arXiv:hep-ph/0109119

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Beuthe, Phys. Rev. D 66, 013003 (2002). arXiv:hep-ph/0202068

    Article  ADS  Google Scholar 

  18. C. Giunti, J. High Energy Phys. 11, 017 (2002). arXiv:hep-ph/0205014

    Article  ADS  Google Scholar 

  19. M. Garbutt, B.H.J. McKellar, arXiv:hep-ph/0308111 (2003)

  20. A. Asahara, K. Ishikawa, T. Shimomura, T. Yabuki, Prog. Theor. Phys. 113, 385 (2005). arXiv:hep-ph/0406141

    Article  ADS  Google Scholar 

  21. A.D. Dolgov, O.V. Lychkovskiy, A.A. Mamonov, L.B. Okun, M.V. Rotaev, M.G. Schepkin, Nucl. Phys. B 729, 79 (2005). arXiv:hep-ph/0505251

    Article  ADS  Google Scholar 

  22. C.C. Nishi, Phys. Rev. D 73, 053013 (2006). arXiv:hep-ph/0506109

    Article  ADS  Google Scholar 

  23. E. Akhmedov, J. Kopp, M. Lindner, J. High Energy Phys. 05, 005 (2008). arXiv:0802.2513 [hep-ph]

    Article  ADS  Google Scholar 

  24. V.A. Naumov, D.V. Naumov, Russ. Phys. J. 53, 549 (2010)

    Article  MATH  Google Scholar 

  25. J. Kopp, J. High Energy Phys. 06, 049 (2009). arXiv:0904.4346 [hep-ph]

    Article  ADS  Google Scholar 

  26. E. Akhmedov, A. Smirnov, Yad. Fiz. 72, 1417 (2009). arXiv:0905.1903 [hep-ph]

    Google Scholar 

  27. B.D. Keister, W.N. Polyzou, Phys. Scr. 81, 055102 (2010). arXiv:0908.1404 [hep-ph]

    Article  ADS  Google Scholar 

  28. A.E. Bernardini, M.M. Guzzo, C.C. Nishi, Fortschr. Phys. 59, 372 (2011). arXiv:1004.0734 [hep-ph]

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Anastopoulos, N. Savvidou, arXiv:1005.4307 [quant-ph] (2010)

  30. D.V. Naumov, V.A. Naumov, J. Phys. G 37, 105014 (2010). arXiv:1008.0306v2 [hep-ph]

    Article  ADS  Google Scholar 

  31. E. Akhmedov, A. Smirnov, Found. Phys. 41, 1279 (2011). arXiv:1008.2077 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  32. E. Akhmedov, J. Kopp, J. High Energy Phys. 04, 008 (2010). arXiv:1001.4815 [hep-ph]

    Article  ADS  Google Scholar 

  33. T.R. Morris, J. Phys. G 39, 045010 (2012). arXiv:1110.3266 [hep-ph]

    Article  ADS  Google Scholar 

  34. E. Akhmedov, D. Hernandez, A. Smirnov, J. High Energy Phys. 04, 052 (2012). arXiv:1201.4128 [hep-ph]

    Article  ADS  Google Scholar 

  35. E. Akhmedov, A. Wilhelm, J. High Energy Phys. 01, 165 (2013). arXiv:1205.6231 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  36. S.E. Korenblit, D.V. Taychenachev, arXiv:1304.5192 [hep-th] (2013)

  37. C. Giunti, M. Laveder, Phys. Rev. C 83, 065504 (2011). arXiv:1006.3244 [hep-ph]

    Article  ADS  Google Scholar 

  38. G. Mention, M. Fechner, Th. Lasserre, Th.A. Mueller, D. Lhuillier et al., Phys. Rev. D 83, 073006 (2011). arXiv:1101.2755 [hep-ex]

    Article  ADS  Google Scholar 

  39. Th.A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon et al., Phys. Rev. C 83, 054615 (2011). arXiv:1101.2663 [hep-ex]

    Article  ADS  Google Scholar 

  40. P. Huber, Phys. Rev. C 84, 024617 (2011). arXiv:1106.0687 [hep-ph]

    Article  ADS  Google Scholar 

  41. M.V. Fedoryuk, Metod Perevala (Nauka, Moscow, 1977)

    MATH  Google Scholar 

  42. P. Anselmann et al. (GALLEX Collaboration), Phys. Lett. B 342, 440 (1995)

    Article  ADS  Google Scholar 

  43. W. Hampel et al. (GALLEX Collaboration), Phys. Lett. B 420, 114 (1998)

    Article  ADS  Google Scholar 

  44. F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Phys. Lett. B 685, 47 (2010). arXiv:1001.2731 [hep-ex]

    Article  ADS  Google Scholar 

  45. J.N. Abdurashitov, V.N. Gavrin, S.V. Girin, V.V. Gorbachev, T.V. Ibragimova et al., Phys. Rev. Lett. 77, 4708 (1996)

    Article  ADS  Google Scholar 

  46. J.N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C 59, 2246 (1999). arXiv:hep-ph/9803418

    Article  ADS  Google Scholar 

  47. J.N. Abdurashitov, V.N. Gavrin, S.V. Girin, V.V. Gorbachev, P.P. Gurkina et al., Phys. Rev. C 73, 045805 (2006). arXiv:nucl-ex/0512041

    Article  ADS  Google Scholar 

  48. Th. Lasserre, J. Phys. Conf. Ser. 375, 042042 (2012)

    Article  ADS  Google Scholar 

  49. Th. Lasserre, in PoS (EPS-HEP2011) (2011), p. 100

    Google Scholar 

  50. G. Mention, J. Phys. Conf. Ser. 408, 012025 (2013)

    Article  ADS  Google Scholar 

  51. C. Zhang, X. Qian, P. Vogel, Phys. Rev. D 87, 073018 (2013). arXiv:1303.0900 [nucl-ex]

    Article  ADS  Google Scholar 

  52. J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz, J. Spitz, Adv. High Energy Phys. 2013, 163897 (2013). arXiv:1207.4765 [hep-ex]

    Google Scholar 

  53. C. Giunti, M. Laveder, Y.F. Li, Q.Y. Liu, H.W. Long, Phys. Rev. D 86, 113014 (2012). arXiv:1210.5715 [hep-ph]

    Article  ADS  Google Scholar 

  54. S.K. Kang, Y.D. Kim, Y. Ko, K. Siyeon, arXiv:1303.6173 [hep-ph] (2013)

  55. J. Kopp, P.A.N. Machado, M. Maltoni, T. Schwetz, J. High Energy Phys. 05, 050 (2013). arXiv:1303.3011v2 [hep-ph]

    Article  ADS  Google Scholar 

  56. C. Giunti, Acta Phys. Pol. B, Proc. Suppl. 6, 667 (2013)

    Article  Google Scholar 

  57. K.N. Abazajian, M.A. Acero, S.K. Agarwalla, A.A. Aguilar-Arevalo, C.H. Albright et al., arXiv:1204.5379 [hep-ph] (2012)

  58. J. Hamann, S. Hannestad, G.G. Raffelt, Y.Y.Y. Wong, J. Cosmol. Astropart. Phys. 09, 034 (2011). arXiv:1108.4136 [astro-ph.CO]

    Article  ADS  Google Scholar 

  59. A. Mirizzi, G. Mangano, N. Saviano, E. Borriello, C. Giunti et al., arXiv:1303.5368 [astro-ph.CO] (2013)

  60. F.P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex]

    Article  ADS  Google Scholar 

  61. F.P. An et al. (Daya Bay Collaboration), Chin. Phys. C 37, 011001 (2013). arXiv:1210.6327 [hep-ex]

    Article  Google Scholar 

  62. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012). arXiv:1204.0626 [hep-ex]

    Article  ADS  Google Scholar 

  63. A. Palazzo, arXiv:1308.5880 [hep-ph] (2013)

  64. C. Giunti, M. Laveder, Y.F. Li, H.W. Long, arXiv:1308.5288 [hep-ph] (2013)

  65. A. Esmaili, E. Kemp, O.L.G. Peres, Z. Tabrizi, arXiv:1308.6218 [hep-ph] (2013)

  66. H. Furuta, Y. Fukuda, T. Hara, T. Haruna, N. Ishihara et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 662, 90 (2012). arXiv:1108.2910 [hep-ex]

    Article  ADS  Google Scholar 

  67. D.A. Dwyer, K.M. Heeger, B.R. Littlejohn, P. Vogel, arXiv:1109.6036 [hep-ex] (2011)

  68. J. Spitz, Phys. Rev. D 85, 093020 (2012). arXiv:1203.6050 [hep-ph]

    Article  ADS  Google Scholar 

  69. A.S. Cucoanes (Nucifer Collaboration), J. Phys. Conf. Ser. 375, 042063 (2012)

    Article  ADS  MATH  Google Scholar 

  70. A.V. Derbin, A.S. Kayunov, V.N. Muratova, arXiv:1204.2449 [hep-ph] (2012)

  71. A.P. Serebrov, V.G. Zinoviev, A.K. Fomin, U.E. Loginov, M.S. Onegin et al., arXiv:1205.2955 [hep-ph] (2012)

  72. V. Belov, V. Brudanin, M. Danilov, V. Egorov, M. Fomina et al., J. Instrum. 08, P05018 (2013). arXiv:1304.3696 [physics.ins-det]

    Article  Google Scholar 

  73. M. Elnimr, I. Stancu, M. Yeh, R. Svoboda, M.J. Wetstein, F.G. Garcia, B. Osmanov, H. Ray, R. Tayloe, J. Boissevain et al., arXiv:1307.7097 [physics.ins-det] (2013)

  74. O. Yasuda, J. High Energy Phys. 09, 036 (2011). arXiv:1107.4766 [hep-ph]

    Article  ADS  Google Scholar 

  75. J. Gaffiot, Nucl. Phys. B, Proc. Suppl. 237–238, 326 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of the Innovative Russia” under Contract No. 14.U02.21.0913 The authors would like to thank Z.G. Berezhiani, S.E. Korenblit, and especially D.V. Naumov (who was the active partner in the early stages of this research) for very useful suggestions, comments and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Naumov.

Appendices

Appendix A: Inverse overlap tensors

The higher order corrections are rather involved but, within the CRGP model for the external wave packets, they are constructed from the spatial components of inverse overlap tensors \(\widetilde{\Re}_{s}^{\mu\nu}\) and \(\widetilde{\Re}_{d}^{\mu\nu}\) defined by Eqs. (35). Here we write down the explicit expressions for these components. It is proved that for arbitrary lepton number violating processes

$$ I_s \oplus I_d \to F_s \oplus F_d $$
(A.1)

(where I s and I d denote the sets of incoming wave packets in the source and detector vertices, respectively; and, similarly, F s and F d denote the sets of outgoing wave packets which include charged leptons) the components of the inverse overlap tensors can be written as

where

the symbols and denote the sets of the in and out packets in the source and detector vertices, respectively; u a =p a /m a =(Γ a ,u a ) and Γ a are the (most probable) 4-velocity and Lorentz factor of the packet a, respectively. It can be verified that the determinant |ℜ s,d | is invariant and \(\widetilde{\Re}_{s,d}^{\mu \nu}\) transforms as a tensor under Lorentz transformations. Note that the above formulas were derived without taking into account the energy-momentum conservation.

As the simplest illustration, we consider here the particular case: the two-particle decay a+ν in the source, where is a charged lepton and ν is a virtual (anti)neutrino with definite mass. In this case

$$\begin{aligned} \widetilde{\Re}_{s}^{\mu\nu} = &\ \bigl\{ \sigma_a^4u_{a}^{\mu}u_{a}^{\nu}+ \sigma_\ell^4u_{\ell}^{\mu }u_{\ell}^{\nu} -\sigma_a^2\sigma_\ell^2 \bigl\{ g^{\mu\nu} \bigl[(u_au_\ell)^2-1 \bigr] \\ &\ -(u_au_\ell) \bigl(u_{a}^{\mu}u_{\ell}^{\nu}+u_{\ell}^{\mu }u_{a}^{\nu} \bigr) \bigr\} \bigr\} \\ &\ \times \bigl\{ \sigma_a^2\sigma_\ell^2 \bigl(\sigma_a^2+\sigma_\ell ^2 \bigr) \bigl[(u_au_\ell)^2-1 \bigr] \bigr\} ^{-1}. \end{aligned}$$

This simple expression can also be used for estimations of the inverse overlap tensors for more involved reactions and decays in the case of strong hierarchy between the momentum spreads σ ϰ . Let us mention, in passing, that the inequality \(\mathfrak{C}_{1}<0\) (see Sect. 4) holds over the whole phase space of the two-particle decay into real (on-shell) neutrino, assuming exact energy-momentum conservation. The corresponding contribution to the inverse-squared effective momentum spread (37) is then given by the following expression:

$$ \frac{1}{4} \bigl(\widetilde{\Re}_s^{11}+ \widetilde{\Re}_s^{22} \bigr) = \frac{K}{ (2E_\nu^{\star} )^2} \biggl(\frac{m_a^2}{\sigma_a^2}+\frac{m_\ell^2}{\sigma_\ell^2} \biggr)+\frac{1}{2 (\sigma_a^2+\sigma_\ell^2 )}, $$

in which

$$ K = \biggl(1-\frac{E^{-}_{\nu}}{E_{\nu}} \biggr) \biggl(\frac{E^{+}_{\nu }}{E_{\nu}}-1 \biggr), $$

\(E^{\pm}_{\nu} = E_{\nu}^{\star}\varGamma_{a}(1\pm|\mathbf{v}_{a}|)\) are the kinematic boundaries of E ν , \(E_{\nu}^{\star}= (m_{a}^{2}-m_{\ell}^{2} )/(2m_{a})\) is the neutrino energy in the rest frame of the decaying particle a, and v a is the velocity of a. The neutrino mass has been neglected in derivation. The kinematic factor K varies within wide limits at relativistic energies but vanishes when the particle a is at rest. For the median neutrino energy, \(E_{\nu}=\overline{E}_{\nu}= (E^{+}_{\nu}+E^{-}_{\nu} )/2=E_{\nu}^{\star}\varGamma_{a}\),

$$K = |\mathbf{v}_a|^2 = 1- \bigl({E_\nu^{\star}}/{ \overline{E}_\nu} \bigr)^2. $$

Appendix B: Effective neutrino wave packet

Here we consider some kind of dualism between the propagator and effective wave-packet approaches. Namely we show that in the asymptotic regime L→∞, the generalized neutrino Green function (1) can be represented as a product of outgoing and incoming effective wave functions of the on-mass-shell neutrino. Below, we use the results of Ref. [30] (obtained within the CRGP model) but with a different and—as we believe—more adequate interpretation which, in particular, allows us to get another look at the corrections to the GS asymptotic.

Let us consider the factor

$$ \frac{1}{L}e^{-\varOmega(T,L)}P_- ( \hat{p}_{\nu}+m )P_+ $$
(B.1)

originated in the full amplitude after applying the GS theorem 1 to Eq. (1) and using the saddle-point integration in variable q 0 [30]. Here

$$ \varOmega(T,L) = i(p_{\nu}X)+ \frac{2\mathfrak{D}^2}{E_\nu^2} \bigl[(p_{\nu}X)^2-m^2X^2 \bigr], $$
(B.2)

p ν =(E ν ,p ν ) is the mean neutrino 4-momentum (p ν E ν l in the ultrarelativistic case) and \(P_{\pm}=\tfrac{1}{2}(1\pm\gamma_{5})\) are the chiral projectors involved into the Standard Model amplitude. The 4-vector X=(X 0,X)=X d X s is the difference between the so-called impact points X s and X d which determine the coordinates of the space-time overlap regions of the external wave packets in the source and detector vertices; note that X=L=L l and X 0=T (see Ref. [30] for more details). The function \(\mathfrak{D}\), which can be treated as the uncertainty of the virtual neutrino energy, is defined by

(B.3)

where \(q_{0}^{\text{st}} \approx E_{\nu}\) is the stationary point. So, in the first approximation the function \(\mathfrak{D}\) does not depend on the neutrino mass and in the coordinate frame where l=(0,0,1) is determined by the 00, 03 and 33 components of the inverse overlap tensors. By applying the identity

$$P_- (\hat{p}_{\nu}+m )P_+=P_-u(\mathbf {p}_{\nu})\overline{u}(\mathbf {p}_{\nu})P_+, $$

in which u(p ν ) is the usual Dirac bispinor for a free ultrarelativistic left-handed neutrino, we can rewrite Eq. (B.1) as follows:

$$\begin{aligned} &{u(\mathbf {p}_{\nu})\frac{e^{-\varOmega(T,L)}}{L} \overline{u}( \mathbf {p}_{\nu})} \\ &{\quad = \frac{\psi_{X_d}(\mathbf {p}_{\nu},X_s-X_d)\overline{\psi}_{X_s}(\mathbf {p}_{\nu},X_d-X_s)}{|\mathbf {X}_d-\mathbf {X}_s|},} \end{aligned}$$
(B.4)

where

$$\begin{aligned} \psi_{y}(\mathbf {p}_{\nu},x) = &\ \exp \biggl\{ -i(p_{\nu}y)-\frac{\mathfrak{D}^2}{E_\nu^2} \bigl[(p_{\nu}x)^2-m^2x^2 \bigr] \biggr\} u(\mathbf {p}_{\nu}) \\ \equiv&\ \varXi_{y}(\mathbf {p}_{\nu},x)u(\mathbf {p}_{\nu}) \end{aligned}$$

and

$$ \overline{\psi}_{y}(\mathbf {p}_{\nu},x) = \psi^{\dagger}_{y}(\mathbf {p}_{\nu},x) \gamma_0 = \overline{u}(\mathbf {p}_{\nu})\varXi_{y}^*( \mathbf {p}_{\nu},x). $$

Let us now compare the function ψ y (p ν ,x) with the wave function

(B.5)

describing a generic fermion wave packet |p,s,y〉 in the coordinate representation (here Ψ(x) is the free fermion field and s is the spin projection). Within the CRGP approximation, valid under the conditions

$$\begin{aligned} &{\sigma^2\ll m^2, \qquad\sigma^4(px)^2 \ll m^4,}\\ &{ \sigma^4 \bigl[(px)^2-m^2x^2 \bigr] \ll m^4,} \end{aligned}$$

the function (B.5) is [30]

We see therefore that the spinor multiplier \(\psi_{X_{d}}(\mathbf {p}_{\nu },X_{s}-X_{d})\) in Eq. (B.4) can be interpreted as the wave function describing the wave packet of a real (on-shell) neutrino incoming to the detector, while the multiplier \(\psi_{X_{s}}^{\dagger}(\mathbf {p}_{\nu },X_{d}-X_{s})/|\mathbf {X}_{d}-\mathbf {X}_{s}|\) can naturally be treated as the spherical wave function of the same neutrino packet escaping the source. From this interpretation it in particular follows that the effective neutrino momentum spread, \(\sigma_{\nu} = m\mathfrak{D}/E_{\nu}\), is not a constant but an invariant function of the neutrino energy as well as of the mean momenta, masses, and momentum spreads of the external wave packets; due to the factor m/E ν it is extremely small in all realistic situations. The main distinctive feature of the effective neutrino wave packet from the conventional quantum-mechanical wave packets is that it depends on both the source and detector variables. Therefore the duality under discussion should not be understood in a literal sense.

The case becomes even more complicated when one takes into account the higher-order corrections to the GS asymptotics. These corrections yield an additional factor

$$ \varSigma= 1+\sum_{k=1}^\infty \frac{a_k}{L^k} $$
(B.6)

with the complex-valued coefficient functions a k dependent on the contributions from both the source and detector. Except for very special or trivial cases (when, i.g., one of the contributions is negligible) the functions a k cannot be factorized to the product of the source and detector dependent multipliers. Therefore, if the spacing between the impact points is short the incoming and outgoing neutrino wave packets are not yet separated from each other as it is the case at the asymptotically large distances. In other words, the duality between the propagator and wave-packet treatments is destroyed at short distances and such a case cannot be adequately described in terms of the asymptotically free in and out neutrino wave packets.

Considering now that the modulus-squared full amplitude incorporates the factors \(|\varXi_{X_{s}}|^{2}\) and \(|\varXi_{X_{d}}|^{2}\) which represent (up to a normalization) the probability densities to obtain the in and out neutrino wave packets near the corresponding impact points in the source and detector, we conclude that the factor |Σ|2 affects both these densities or, to put this another way, at relatively short distances between the impact points the factor |Σ|2 changes the probabilities of neutrino production and detection.

It is important to note that, in contrast with the function \(\mathfrak {D}\), the coefficient functions a k include the components \(\widetilde{\Re}_{s,d}^{11}\) and \(\widetilde{\Re }_{s,d}^{22}\) transversal with respect to the neutrino momentum direction l=(0,0,1) (see Eq. (37) as the simplest example). These components are not suppressed by the Lorentz factor E ν /m and thus the ISL violation effect can be large even for massless neutrinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, V.A., Shkirmanov, D.S. Extended Grimus–Stockinger theorem and inverse-square law violation in quantum field theory. Eur. Phys. J. C 73, 2627 (2013). https://doi.org/10.1140/epjc/s10052-013-2627-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2627-z

Keywords

Navigation