Skip to main content
Log in

Relative effectiveness of pretreatments on performance of Rhizomucor miehei lipase in nonpolar reaction media

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes can be used in nonpolar reaction media to modify waterinsoluble substrates. A variety of pretreatments, applied to the enzyme prior to introduction to the nonpolar media, can improve enzyme activity. However, the various pretreatments have not been studied using directly comparable conditions, nor have they been applied simultaneously to test for interactive effects. This work evaluates pretreatment of lipase with various classes of additives. The pretreated lipase is used to catalyze esterification between citronellol and acetic acid in a medium of n-hexane. The effectiveness of a particular pretreatment is presented in terms of relative performance (RP), which is equal to the number of times faster the pretreated lipase catalyzes the reaction relative to untreated lipase. The individual and interactive effects of the pretreatment factors were studied and compared. Buffer salts had a much stronger performance-enhancing effect than nonbuffer salts; pretreatment with 90% (w/w) sodium phosphate yielded lipase with an RP of approx 64. A strong interaction was found between the treatments with sodium phosphate and pH adjustment. These treatments may mitigate the inhibitory effect of acetic acid. Activating effects of phase interfaces and active-site protectants are shown to be complementary to other treatments, demonstrating that they likely act by distinct mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaks, A. and Klibanov, A. M. (1988), J. Biol. Chem. 263(7), 3194–3201.

    PubMed  CAS  Google Scholar 

  2. Zaks, A. (1991), in Biocatalysis for Industry, Dordick, J. S., ed., Plenum, New York, pp. 161–180.

    Google Scholar 

  3. Klibanov, A. M. (2001), Nature 409, 241–246.

    Article  PubMed  CAS  ADS  Google Scholar 

  4. Persson, M., Mladenoska, I., Wehtje, E., and Aldercreutz, P. (2002), Enzyme Microb. Technol. 31, 833–841.

    Article  CAS  Google Scholar 

  5. Griebenow, K. and Klibanov, A. M. (1995), Proc. Natl. Acad. Sci. USA 92, 10,969–10,976.

    Article  CAS  Google Scholar 

  6. De Castro, H. F., Napoleao, D. A. S., and Oliveira, P. C. (1998), Appl. Biochem. Biotechnol. 70–72, 667–675.

    Article  Google Scholar 

  7. Claon, P. A. and Akoh, C. C. (1994), Enzyme Microb. Technol. 16, 835–838.

    Article  CAS  Google Scholar 

  8. Laboret, F. and Perraud, R. (1999), Appl. Biochem. Biotechnol. 82, 185–198.

    Article  PubMed  CAS  Google Scholar 

  9. Brady, L., Brzozowski, A. M., Derewenda, Z. S., et al. (1990), Nature 343, 767–770.

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Mingarro, I., Abad, C., and Braco, L. (1995), Proc. Natl. Acad. Sci. USA 92, 3308–3312.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Louwrier, A., Drtina, G. J., and Klibanov, A. M. (1996), Biotechnol. Bioeng. 50(1), 1–5.

    Article  CAS  Google Scholar 

  12. Gonzalez-Navarro, H. and Braco, L. (1998), Biotechnol. Bioeng. 59(1), 122–127.

    Article  PubMed  Google Scholar 

  13. Guo, Y. and Clark, D. S. (2001), Biochim. Biophys. Acta 1546, 406–411.

    PubMed  CAS  Google Scholar 

  14. Dai, L. and Klibanov, A. M. (1999), Proc. Natl. Acad. Sci. USA 96, 9475–9478.

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Ru, M. T., Dordick, J. S., Reimer, J. A., and Clark, D. S. (1997), Biotechnol. Bioeng. 63(2), 233–241.

    Article  Google Scholar 

  16. Rich, J. O. and Dordick, J. S. (1997), J. Am. Chem. Soc. 119, 3245–3252.

    Article  CAS  Google Scholar 

  17. Triantafyllou, A. O., Wehtje, E., Aldercruz, P., and Mattiasson, B. (1997), Biotechnol. Bioeng. 54(1), 67–76.

    Article  CAS  Google Scholar 

  18. Anthonsen, T. and Sjursnes, B. J. (2001), in Methods in Non-aqueous Enzymology, Gupta, M. N., ed., Birkhauser Verlag, Boston, MA, pp. 14–35.

    Google Scholar 

  19. Valivety, R. H., Halling, P. J., Peilow, A. D., and Macrae, A. R. (1992), Biochim. Biophys. Acta 1122, 143–146.

    PubMed  CAS  Google Scholar 

  20. Zaks, A. and Klibanov, A. M. (1988), J. Biol. Chem. 263(17), 8017–8021.

    PubMed  CAS  Google Scholar 

  21. Gorman, L. A. S. and Dordick, J. S. (1992), Biotechnol. Bioeng. 39, 392–397.

    Article  CAS  Google Scholar 

  22. Dabulis, K. and Klibanov, A. M. (1993), Biotechnol. Bioeng. 41(5), 566–571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael A. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, R.A., Riley, M.R. Relative effectiveness of pretreatments on performance of Rhizomucor miehei lipase in nonpolar reaction media. Appl Biochem Biotechnol 120, 81–95 (2005). https://doi.org/10.1385/ABAB:120:2:081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:2:081

Index Entries

Navigation