Skip to main content
Log in

Phase transformation and microstructural development of zirconia/stainless steel bonded with a Ti/Ni/Ti interlayer for the potential application in solid oxide fuel cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The 8 mol% yttria-stabilized zirconia (8Y-ZrO2) was bonded to stainless steel 316L at 900 °C for 1 h in a protective Ar atmosphere using an interlayer of Ti/Ni/Ti. Interfacial microstructures were characterized using both secondary electron microscope (SEM) and transmission electron microscope (TEM), each with an attached energy dispersive spectroscope (EDS). A layer sequence of σ-phase/TiFe2/TiFe + β-Ti/Ti2Fe was observed at the stainless steel 316L/Ti interface, whereas a layer sequence of Ti2Ni/Ti2Ni + TiNi/TiNi3 was found at the Ti/Ni interface. Furthermore, TiO and c-ZrO2−x formed at the Ti/8Y-ZrO2 interface. An acicular α-Ti and a fine ω-phase existed along with β-Ti in the residual Ti foil adjacent to the stainless steel 316L, but α-Ti and Ti2Ni were observed within β-Ti in the other residual Ti foil adjacent to the 8Y-ZrO2. The orientation relationships of the ω-phase and β-Ti were \({\left[ {1\bar 10} \right]_{{\rm{\beta - Ti}}}}//{\left[ {1\bar 210} \right]_{\rm{\omega}}}\) and (111)β-Ti//(0001)ω, respectively. The microstructural development was elucidated with the aid of Fe–Ti and Ni–Ti binary phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76(3), 563 (1993).

    Article  CAS  Google Scholar 

  2. C.H. Cheng, Y.W. Chang, and C.W. Hong: Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell. J. Fuel Cell Sci. Technol. 2(4), 219 (2005).

    Article  CAS  Google Scholar 

  3. R.M. Ormerod: Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17 (2003).

    Article  CAS  Google Scholar 

  4. W.Z. Zhu and S.C. Deevi: Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A 348(1–2), 227 (2003).

    Article  CAS  Google Scholar 

  5. I. Antepara, I. Villarreal, L.M. Rodríguez-Martínez, N. Lecanda, U. Castro, and A. Laresgoiti: Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. J. Power Sources 151, 103 (2005).

    Article  CAS  Google Scholar 

  6. M. Singh, T.P. Shpargel, and R. Asthana: Brazing of stainless steel to yttria-stabilized zirconia using gold-based brazes for solid oxide fuel cell applications. Int. J. Appl. Ceram. Technol. 4(2), 119 (2007).

    Article  CAS  Google Scholar 

  7. S. Molin, M. Gazda, B. Kusz, and P. Jasinski: Evolution of 316L porous stainless steel for SOFC support. J. Eur. Ceram. Soc. 29, 757 (2009).

    Article  CAS  Google Scholar 

  8. L. Niewolak, E. Wessel, L. Singheiser, and W.J. Quadakkers: Potential suitability of ferritic and austenitic steels as interconnect materials for solid oxide fuel cells operating at 600°C. J. Power Sources 195, 7600 (2010).

    Article  CAS  Google Scholar 

  9. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, and P. Asinari: Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells. J. Eur. Ceram. Soc. 28(3), 611 (2008).

    Article  CAS  Google Scholar 

  10. G.W. Liu, W. Li, G.J. Qiao, H.J. Wang, J.F. Yang, and T.J. Lu: Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing. J. Alloys Compd. 470(1–2), 163 (2009).

    Article  CAS  Google Scholar 

  11. M. Singh, T.P. Shpargel, and R. Asthana: Braze oxidation behavior and joint microstructure in YSZ/steel joints made using palladium brazes for SOFC applications. Mater. Sci. Eng. A 485(1–2), 695 (2008).

    Article  CAS  Google Scholar 

  12. C. Zheng, H. Lou, Z. Fei, and Z. Li: Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers. J. Mat. Sci. Lett. 16(24), 2026 (1997).

    Article  CAS  Google Scholar 

  13. M. Paulasto, G. Ceccone, and S.D. Peteves: Joining of silicon nitride via a transient liquid. Scr. Mater. 36(10), 1167 (1997).

    Article  CAS  Google Scholar 

  14. R. Chen, D. Zuo, and M. Wang: Improvement of joint strength of SiCp/A1 metal matrix composite in transient liquid phase bonding using Cu/Ni/Cu film interlayer. J. Mater. Sci. Technol. 22(3), 291 (2006).

    CAS  Google Scholar 

  15. G.J. Qiao, H.J. Wang, J.Q. Gao, and Z.H. Jin: Brazing Al2O3 to Kovar alloy with Ni/Ti/Ni interlayer and dramatic increasing of joint strength after thermal cycles. Mater. Sci. Forum 486–487, 481 (2005).

    Article  Google Scholar 

  16. O. Smorygo, J.S. Kim, M.D. Kim, and T.G. Eom: Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints. Mater. Lett. 61(2), 613 (2007).

    Article  CAS  Google Scholar 

  17. Z.G. Wang, N. Kato, K. Sasaki, T. Hirayama, and H. Saka: Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam. J. Electron Microsc. 53(2), 115 (2004).

    Article  CAS  Google Scholar 

  18. G. Cliff and G.W. Lorimer: The quantitative analysis of thin specimens. J. Microsc. 103(2), 203 (1975).

    Article  Google Scholar 

  19. S. Hinotani and Y. Ohmori: The microstructure of diffusion-bonded Ti/Ni interface. Trans. Jpn. Inst. Met. 29, 116 (1988).

    Article  CAS  Google Scholar 

  20. Y.W. Chang and C.C. Lin: Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550°C. J. Am. Ceram. Soc. 93(11), 3893 (2010).

    Article  CAS  Google Scholar 

  21. M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, and S. Chatterjee: Diffusion bonding of titanium to 304 stainless steel. J. Nucl. Mater. 322(2–3), 235 (2003).

    Article  CAS  Google Scholar 

  22. M. Ghosh and S. Chatterjee: Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater. Sci. Eng. A 358(1–2), 152 (2003).

    Article  CAS  Google Scholar 

  23. M. Ghosha, S. Chatterjee, and B. Mishra: The effect of intermetallics on the strength properties of diffusion bonds formed between Ti-5.5Al-2.4V and 304 stainless steel. Mater. Sci. Eng. A 363(1–2), 268 (2003).

    Article  CAS  Google Scholar 

  24. N. Orhan, T.I. Khan, and M. Eroglu: Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V. Scr. Mater. 45(4), 441 (2001).

    Article  CAS  Google Scholar 

  25. K.A. Gschneidner, Jr. and M. Verkade: Electronic and crystal structures, size (ECS2) model for predicting binary solid solutions. Prog. Mater. Sci. 49(3–4), 411 (2004).

    Article  CAS  Google Scholar 

  26. H. Qin, J. Hu, B. Li, M. Zhao, X. Liu, and J. Chen: Fe74.5-xCuxV3Si13.5B9 as-spun ribbons prepared by melt-spinning technique. Mater. Trans. 49, 2761 (2008).

    Article  CAS  Google Scholar 

  27. J.L. Murray: The Fe-Ti (iron-titanium) system. Bull. Alloy Phase Diagrams 2(3), 320 (1981).

    Article  Google Scholar 

  28. P. He, J.H. Zhang, and X.Q. Li: Diffusion bonding of titanium alloy to stainless steel wire mesh. Mater. Sci. Technol. 17, 1158 (2001).

    Article  CAS  Google Scholar 

  29. K.L. Lin and C.C. Lin: Reaction between titanium and zirconia powders during sintering at 1500°C. J. Am. Ceram. Soc. 90(7), 2220 (2007).

    Article  CAS  Google Scholar 

  30. K.L. Lin and C.C. Lin: Effects of annealing temperature on microstructural development at the interface between zirconia and titanium. J. Am. Ceram. Soc. 90(3), 893 (2007).

    Article  CAS  Google Scholar 

  31. C.C. Lin, Y.W. Chang, K.L. Lin, and K.F. Lin: Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700oC. J. Am. Ceram. Soc. 91(7), 2321 (2008).

    Article  CAS  Google Scholar 

  32. V.M. Perevertailo, O.B. Loginova, and N.G. Bagno: Interaction between metal melts and zirconium dioxide. Trans. JWRI 30, 143 (2001).

    CAS  Google Scholar 

  33. X.M. Xue, J.T. Wang, and Z.T. Sui: Wettability and interfacial reaction of alumina and zirconia by reactive silver-indium base alloy at mid-temperatures. J. Mater. Sci. 28(5), 1317 (1993).

    Article  CAS  Google Scholar 

  34. B.S. Hickman: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4(6), 554 (1969).

    Article  CAS  Google Scholar 

  35. I.I. Kornilov and N.G. Boriskina: The Ti-Fe phase diagram. Dokl. Akad. Nauk SSSR 108, 1083 (1956).

    CAS  Google Scholar 

  36. V.P. Itkin: Cr-Fe (Chromium-Iron), in Phase Diagrams of Binary Iron Alloys, H. Okamoto ed.; ASM International, Metal Park, OH, 1993, p. 102.

    Google Scholar 

  37. A.S. Grot and J.E. Spruiell: Microstructural stability of titanium-modified type 316 and type 321 stainless steel. Metall. Mater. Trans. A 6(11), 2023 (1975).

    Article  Google Scholar 

  38. F.C. Hull: Effects of composition on embrittlement of austenitic stainless steel. Weld. Res. Suppl. 52, S104 (1973).

    Google Scholar 

  39. G.F. Bastin and G.D. Rieck: Diffusion in the titanium-nickel system: I. occurrence and growth of the various intermetallic compounds. Metall. Mater. Trans. B 5(8), 1817 (1974).

    Article  CAS  Google Scholar 

  40. M. Nishida, C.M. Wayman, and T. Honma: Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Mater. Trans. A 17(9), 1505 (1986).

    Article  Google Scholar 

  41. E.W. Hare and D.H. Polonis: Electrical resistivity-constitution relationships in Ti-Fe and Ti-Ni alloys. J. Mater. Sci.: Mater. Electron. 1(1), 25 (1990).

    CAS  Google Scholar 

  42. D.L. Moffat and D.C. Larbalestier: The competition between martensite and omega in quenched Ti-Nb alloys. Metall. Trans. A 19(7), 1677 (1988).

    Article  Google Scholar 

  43. J.C. Williams, B.S. Hickamn, and D.H. Leslie: The effect of ternary additions on the decomposition of metastable beta-phase titanium alloys. Metall. Trans. 2(2), 477 (1971).

    Article  CAS  Google Scholar 

  44. D.H. Polonis: Phase Transformations in Titanium-Rich Alloys with Iron and Nickel. Ph.D. Thesis, University of British Columbia, BC, Canada, 1955, pp. 65.

    Google Scholar 

Download references

ACKNOWLEDGMENT

This research was supported by the National Science Council (Taiwan) under Contract No. NSC98-2221-E-009-039-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Cheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, SH., Lin, CC. Phase transformation and microstructural development of zirconia/stainless steel bonded with a Ti/Ni/Ti interlayer for the potential application in solid oxide fuel cells. Journal of Materials Research 29, 923–934 (2014). https://doi.org/10.1557/jmr.2014.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.65

Navigation