Skip to main content
Log in

Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. Here we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypical heterostructures, Ba1−xSrxTiO3/Ge and SrZrxTi1−xO3/Ge, will be discussed. In the case of Ba1−xSrxTiO3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZrxTi1−xO3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. R.A. McKee, F.J. Walker, and M.F. Chisholm: Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014 (1998).

    Article  CAS  Google Scholar 

  2. J.W. Reiner, A.M. Kolpak, Y. Segal, K.F. Garrity, S. Ismail-Beigi, C.H. Ahn, and F.J. Walker: Crystalline oxides on semiconductors. Adv. Mater. 22, 2919 (2010).

    Article  CAS  Google Scholar 

  3. S-H. Baek and C.B. Eom: Epitaxial integration of perovskite-based multifunctional oxides. Acta Mater. 61, 2734 (2013).

    Article  CAS  Google Scholar 

  4. M. Imada, A. Fujimori, and Y. Tokura: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  Google Scholar 

  5. M. Dawber, K.M. Rabe, and J.F. Scott: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).

    Article  CAS  Google Scholar 

  6. Y-R. Wu and J. Singh: Polar heterostructure for multifunction devices: Theoretical studies. IEEE Trans. Electron Devices 52, 284 (2005).

    Article  CAS  Google Scholar 

  7. S. Salahuddin and S. Datta: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405 (2008).

    Article  CAS  Google Scholar 

  8. I. Zutic, J. Fabian, and S. Das Sarma: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  CAS  Google Scholar 

  9. O. Khaselev and J.A. Turner: A monolithic photovoltaic-photoelectroechemical device for hydrogen production via water splitting. Science 280, 425 (1998).

    Article  CAS  Google Scholar 

  10. S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, and N.S. Lewis: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005 (2014).

    Article  CAS  Google Scholar 

  11. L. Ji, M.D. McDaniel, S. Wang, A.B. Posadas, X. Li, H. Huang, J.C. Lee, A.A. Demkov, A.J. Bard, J.G. Ekerdt, and E.T. Yu: A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84 (2015).

    Article  CAS  Google Scholar 

  12. J.H. Ngai, D.P. Kumah, C.H. Ahn, and F.J. Walker: Hysteretic electrical transport in BaTiO3/Ba1−xSrxTiO3/Ge heterostructures. Appl. Phys. Lett. 104, 062905 (2014).

    Article  CAS  Google Scholar 

  13. J. Moghadam, K. Ahmadi-Majlan, X. Shen, T. Droubay, M. Bowden, M. Chrysler, D. Su, S.A. Chambers, and J.H. Ngai: Band-gap engineering at a semiconductor–crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).

    Article  CAS  Google Scholar 

  14. J.M. Rondinelli, S.J. May, and J.W. Freeland: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).

    Article  CAS  Google Scholar 

  15. K. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, X. Pan, V. Gopalan, L-Q. Chen, D. Schlom, and C. Eom: Enhancement of ferroelectricity in strained BaTiO3 films. Science 306, 1005 (2004).

    Article  CAS  Google Scholar 

  16. Y. Takamura, R.V. Chopdekar, E. Arenholz, and Y. Suzuki: Control of the magnetic and magnetotrasnport properties of La0.7Sr0.3MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92, 162504 (2008).

    Article  CAS  Google Scholar 

  17. W. Prellier, M. Rajeswari, T. Venkatesan, and R. Greene: Effect of substrate-induced strain on the charge-ordering transition in Nd0.5Sr0.5MnO3 thin films. Appl. Phys. Lett. 75, 1446 (1999).

    Article  CAS  Google Scholar 

  18. D. Meyers, S. Middey, M. Kareev, M. van Veenendaal, E.J. Moon, B.A. Gray, J. Liu, J.W. Freeland, and J. Chakhalian: Strain-modulated Mott transition in EuNiO3 ultrathin films. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 075116 (2013).

    Article  CAS  Google Scholar 

  19. J.W. Matthews: In Coherent Interfaces and Misfit Dislocations: Epitaxial Growth Part B, J.W. Matthews, ed. (Academic Press Inc., New York, 1975); p. 559.

  20. J.W. Reiner, F.J. Walker, R.A. McKee, C.A. Billman, J. Junquera, K.M. Rabe, and C.H. Ahn: Ferroelectric stability of BaTiO3 in a crystalline oxide on semiconductor structure. Phys. Status Solidi B 241, 2287 (2004).

    Article  CAS  Google Scholar 

  21. P. Chandra and P.B. Littlewood: In A Landau Primer for Ferroelectrics: Physics of ferroelectrics: A modern Perspective, K. Rabe, C.H. Ahn, and J.-M. Triscone, eds. (Topics in Applied Physics, Springer-Verlag, Berlin Heidelberg, 2007); p. 69.

    Google Scholar 

  22. V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y.L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J.C. Woicik, L.Q. Chen, V. Gopalan, and D.G. Schlom: c-Axis oriented eptiaxial BaTiO3 films on (001) Si. J. Appl. Phys. 100, 024108 (2006).

    Article  CAS  Google Scholar 

  23. P. Ponath, K. Fredrickson, A.B. Posadas, Y. Ren, X. Wu, R.K. Vasudevan, M.B. Okatan, S. Jesse, T. Aoki, M.R. McCartney, D.J. Smith, S.V. Kalinin, K. Lai, and A.A. Demkov: Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nat. Commun. 6, 6067 (2014).

    Article  CAS  Google Scholar 

  24. R. Contreras-Guerrero, J.P. Veazey, J. Levy, and R. Droopad: Properties of epitaxial BaTiO3 deposited on GaAs. Appl. Phys. Lett. 102, 012907 (2013).

    Article  CAS  Google Scholar 

  25. A. Klein and F. Chen: Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 094105 (2012).

    Article  CAS  Google Scholar 

  26. Z. Wen, C. Li, D. Wu, A. Li, and N. Ming: Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617 (2013).

    Article  CAS  Google Scholar 

  27. V.M. Fridkin: Ferroelectric Semiconductors (Consultants Bureau, New York, 1980).

    Google Scholar 

  28. M.B. Okatan, J.V. Mantese, and S.P. Alpay: Effect of space charge on the polarization hysteresis characteristics of monolithic and compositionally graded ferroelectrics. Acta Mater. 58, 39 (2010).

    Article  CAS  Google Scholar 

  29. J. Robertson: Band offsets of wide-band-gap oxides and implications on future electronic devices. J. Vac. Sci. Technol., B 18, 1785 (2000).

    Article  CAS  Google Scholar 

  30. F. Amy, A. Wan, A. Kahn, F.J. Walker, and R.A. McKee: Surface and interface chemical composition of thin epitaxial SrTiO3 and BaTiO3. J. Appl. Phys. 96, 1601 (2004).

    Article  CAS  Google Scholar 

  31. S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, and J. Ramdani: Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vac. Sci. Technol., A 19, 934 (2001).

    Article  CAS  Google Scholar 

  32. Y. Liang, J. Kulik, T. Eschrich, R. Droopad, Z. Yu, and P. Maniar: Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy. Appl. Phys. Lett. 85, 1217 (2004).

    Article  CAS  Google Scholar 

  33. L. Kornblum, M.D. Morales-Acosta, E.N. Jin, C.H. Ahn, and F.J. Walker: Transport at the epitaxial interface between germanium and functional oxides. Adv. Mater. Interfaces 2, 1500193 (2015).

    Article  CAS  Google Scholar 

  34. F. Capasso: Band-gap engineering: From physics and materials to new semiconductor devices. Science 235, 172 (1987).

    Article  CAS  Google Scholar 

  35. R. Schafranek, J. Baniecki, M. Ishii, Y. Kotaka, K. Yamanka, and K. Kurihara: Band offsets at the epitaxial SrTiO3/SrZrO3(001) heterojunction. J. Phys. D: Appl. Phys. 45, 055303 (2012).

    Article  CAS  Google Scholar 

  36. A.P. Kajdos, D.G. Ouellette, T.A. Cain, and S. Stemmer: Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti,Zr)O3 heterostructure. Appl. Phys. Lett. 103, 082120 (2013).

    Article  CAS  Google Scholar 

  37. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J-P. Locquet, J. Fompeyrine, D.J. Webb, C. Dieker, and J.W. Seo: Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89, 053506 (2006).

    Article  CAS  Google Scholar 

  38. S. Jeon, F.J. Walker, C.A. Billman, R.A. McKee, and H. Hwang: Electrical characteristics of epitaxially grown SrTiO3 on silicon for metal-insulator-semiconductor gate dielectric applications. IEEE Electron Device Lett. 24, 218 (2003).

    Article  CAS  Google Scholar 

  39. R.M. Wallace, P.C. McIntyre, J. Kim, and Y. Nishi: High-k gate dielectrics for CMOS technology. MRS Bull. 34, 493 (2009).

    Article  CAS  Google Scholar 

  40. E.A. Kraut, R.W. Grant, J.W. Waldrop, and S.P. Kowalczyk: Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620 (1980).

    Article  CAS  Google Scholar 

  41. E.A. Kraut, R.W. Grant, J.W. Waldrop, and S.P. Kowalczyk: Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by X-ray photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 28, 1965 (1983).

    Article  CAS  Google Scholar 

  42. J-P. Han and T.P. Ma: SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer. App. Phys. Lett. 72, 1185 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the University of Texas at Arlington and the National Science Foundation (NSF) under DMR-1508530. The work performed at Yale University was supported by the NSF under DMR-1309868. The work performed at Brookhaven National Laboratory was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. The work performed at Pacific Northwest National Laboratory was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award 10122, and was carried out in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Ngai.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngai, J.H., Ahmadi-Majlan, K., Moghadam, J. et al. Electrically coupling complex oxides to semiconductors: A route to novel material functionalities. Journal of Materials Research 32, 249–259 (2017). https://doi.org/10.1557/jmr.2016.496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.496

Navigation