Skip to main content
Log in

Design and economics of industrial production of fructooligosaccharides

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A process for industrial production of fructooligosaccharides (FOS’s) based on the conversion of sucrose by immobilized fructosyltransferase (FTase) from the cells of Aureobasidium pullulans CCY 27-1-94 was developed. Particular process operations and conditions were designed employing results of laboratory and semi-pilot scale experiments. The process flowsheet comprised three sections: FTase production, which included fermentation, isolation and purification of the enzyme, FTase immobilization and FOS’s production where a product with a high content of FOS’s was prepared by the removal of glucose, fructose and unreacted sucrose from the reaction mixture using simulated moving-bed chromatography. Two alternative process flowsheets were proposed for the annual production of 10 000 t of FOS’s: one for a powdery product and the second one for syrup. The economic analysis provided the costs for the production of immobilized FTase and FOS’s using two different price estimates for sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboudzadeh, M. R., Jiawen, Z., & Bin, W. (2006). Modeling of protein adsorption to DEAE Sepharose FF: Comparison of data with model simulation. Korean Journal of Chemical Engineering, 23, 124–130. DOI: 10.1007/BF02705703.

    Article  CAS  Google Scholar 

  • Aydogan, N., Gurkan, T., & Yilmaz, L. (1998). Effect of operating parameters on the separation of sugars by nanofiltration. Separation Science and Technology, 33, 1767–1785.

    Article  CAS  Google Scholar 

  • Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics, A. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706. DOI: 10.1016/S0032-9592(02)00189-9.

    Article  CAS  Google Scholar 

  • Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361. DOI: 10.1016/S0924-2244(96) 10038-8.

    Article  CAS  Google Scholar 

  • Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362. DOI: 10.1080/20014091091841.

    Article  CAS  Google Scholar 

  • Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, 287–291. DOI: 10.1079/BJN/2002550.

    Google Scholar 

  • Garleb, K. A., Snook, J. T., Marcon, M. J., Wolf, B. W., & Johnson, W. A. (1996). Effect of fructooligosaccharide containing enteral formulas on subjective tolerance factors, serum chemistry profiles, and feacal bifidobacteria in healthy adult male subjects. Microbial Ecology in Health and Disease, 9, 279–285.

    Article  Google Scholar 

  • Ghazi, I., Fernandez-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211. DOI: 10.1016/j.jbiotec.2006.09.017.

    Article  CAS  Google Scholar 

  • Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccha-rides by nanofiltration. Journal of Membrane Science, 209, 321–335. DOI: 10.1016/S0376-7388(02)00362-9.

    Article  CAS  Google Scholar 

  • Gramblička, M., & Polakovič, M. (2007). Adsorption equilibria of glucose, fructose, sucrose, and fructooligosaccharides on cation exchange resin. Journal of Chemical & Engineering Data, 52, 345–350. DOI: 10.1021/je060169d.

    Article  CAS  Google Scholar 

  • Heinzle, E., Biwer, A. P., & Cooney, C. L. (2006). Development of sustainable bioprocesses. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Charton, F., & Nicoud, R.-M. (1995). Complete design of a simulated moving bed. Journal of Chromatography A, 702, 97–112. DOI: 10.1016/0021-9673(94)01026-B.

    Article  CAS  Google Scholar 

  • Chen, W. C., & Liu, C. H. (1996). Production of beta-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160. DOI: 10.1016/0141-0229(95)00099-2.

    Article  CAS  Google Scholar 

  • Chien, C.-S., Lee, W.-C., & Lin, T.-J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology, 29, 252–257. DOI: 10.1016/S0141-0229(01)00384-2.

    Article  CAS  Google Scholar 

  • Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme and Microbial Technology, 11, 491–494. DOI: 10.1016/0141-0229(89)90029-X.

    Article  CAS  Google Scholar 

  • Kim, B. W., Kishihara, S., & Satoshi, F. (1992). Simultaneously continuous separation of glucose,maltose, and maltotriose using a simulated moving-bed adsorbent. Bioscience, Biotechnology, and Biochemistry, 56, 801–802.

    CAS  Google Scholar 

  • L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84. DOI: 10.1016/S0168-1656(00)00277-7.

    Article  CAS  Google Scholar 

  • L’Homme, C., Puigserver, A., & Biagini, A. (2003). Effect of food-processing on the degradation of fructooligosaccharides in fruit. Food Chemistry, 82, 533–537. DOI:10.1016/S0308-8146(03)00003-7.

    Article  CAS  Google Scholar 

  • Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). Purification and properties of intracellular fructosyl transferase from Aureobasidium pullulans. World Journal of Microbiology & Biotechnology, 8, 411–415.

    Article  CAS  Google Scholar 

  • Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., & Báleš, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharrides. Chemical Papers, 53, 366–369.

    Google Scholar 

  • Nguyen, Q. D., Rezessy-Szabo, J. M., Bhat, M. K., & Hoschke, A., (2005). Purification and some properties of [α]-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466. DOI: 10.1016/j.procbio. 2004.09.012.

    Article  CAS  Google Scholar 

  • Nizhizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membranereactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44.

    Article  Google Scholar 

  • Onderková, Z., Polakovič, M., Štefuca, V., Vandákova, M., & Antošová, M. (2006). Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 60, 469–472. DOI: 10.2478/s11696-006-0085-x.

    Article  CAS  Google Scholar 

  • Rivero-Urgell, M., & Santamaria-Orleans, A. (2001). Oligosac-charides: application in infant food. Early Human Development, 65(Supplement 2), 43–52. DOI: 10.1016/S0378-3782(01)00202-X.

    Article  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyltransferase from Aspergillus oryzea CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760. DOI: 10.1016/S0032-9592(03)00186-9.

    Article  CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457. DOI: 10.1016/j.tifs.2005.05.003.

    Article  CAS  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64. DOI: 10.1016/j.jfoodeng.2004.05.022.

    Article  Google Scholar 

  • Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088. DOI: 10.1016/j. procbio.2004.03.009.

    Article  CAS  Google Scholar 

  • Spiegel, J. E., Rose, R., Karabell, P. Frankos, V. H., & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology, 48, 85–89.

    CAS  Google Scholar 

  • Takahashi, Y., & Goto, S. (1994). Continuous separation of fructooligosaccharides using an annular chromatograph. Separation Science and Technology, 29, 1311–1318. DOI: 10.1080/01496399408006942.

    Article  CAS  Google Scholar 

  • Tanriseven, A., & Aslan, Y. (2005). Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology, 36, 550–554. DOI: 10.1016/j.enzmictec. 2004.12.001.

    Article  CAS  Google Scholar 

  • Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M., (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22.

    Google Scholar 

  • Vandáková, M., Vaňková, K., Juraščík, M., Annus, J., Minárik, M., & Polakovič, M. (2007). Fructosyltransferase production and isolation in semi-pilot scale. In Proceedings of the 34th International Conference of the Slovak Society of Chemical Engineering, 21–25 May 2007. Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Vaňková, K., Antošová, M., & Polakovič, M., (2005). Design and economics of industrial production of fructosyltransferase. Chemical Papers, 59, 441–448.

    Google Scholar 

  • Vente, J. A. (2005). Adsorbent functionality in relation to selectivity and capacity in oligosaccharide separations. PhD. Thesis, University of Twente, the Netherlands.

    Google Scholar 

  • Yun, J. W. (1996). Fructooligosaccharides-Occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117. DOI: 10.1016/0141-0229(95)00188-3.

    Article  CAS  Google Scholar 

  • Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1997). Comparison of sugar compositions between inulo-and fructo-oligosacharides produced by different enzymes forms. Biotechnology Letters, 19, 553–556. DOI: 10.1023/A: 1018393505192.

    Article  CAS  Google Scholar 

  • Yun J. W., Lee, M., G., & Song, S. K., (1994). Batch production of high-content fruto-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase. Journal of Fermentation and Bio engineering, 77, 159–163. DOI: 10.1016/0922-338X(94)90316-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Polakovič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaňková, K., Onderková, Z., Antošová, M. et al. Design and economics of industrial production of fructooligosaccharides. Chem. Pap. 62, 375–381 (2008). https://doi.org/10.2478/s11696-008-0034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0034-y

Keywords

Navigation