Skip to main content
Log in

Artificial neural network prediction of steric hindrance parameter of polymers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) model for modeling and prediction of the steric hindrance parameter σ of polymers with three quantum chemical descriptors, the average polarizability of a molecule α, entropy S, and dipole moment μ, was developed. These descriptors were calculated from the monomers of the respective polymers according to the density functional theory at the B3LYP level of the theory with the 6-31G(d) basis set. Optimal conditions were obtained by adjusting various parameters by trial-and-error. Simulated with the final optimum BP neural network [3-1-1], the results show that the predicted σ values are in good agreement with the experimental ones, with the root mean square (rms) error being 0.080 (R = 0.945) for the training set, and 0.078 (R = 0.918) for the test set, which indicates that the proposed model has better predictive capability than the existing one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becke, A. D. (1993). Density-functional thermochemistry III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Bicerano, J. (1996). Prediction of polymer properties (2nd ed.). New York: Marcelar Dekker.

    Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery,Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B. 05. Pittsburgh, PA: Gaussian Inc.

  • Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027–1043. DOI: 10.1021/cr950202r.

    Article  CAS  Google Scholar 

  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review, B37, 785–789. DOI: 10.1103/PhysRevB.37.785.

    Google Scholar 

  • Liu, W. Q., Yi, P. G., & Tang, Z. L. (2006). QSPR models for various properties of polymethacrylates based on quantum chemical descriptors. QSAR & Combinatorial Science, 25, 936–943. DOI: 10.1002/qsar.200510177.

    Article  CAS  Google Scholar 

  • Malík, I., Sedlarova, E., Csöllei, J., Andriamainty, F., & Čižmarik, J. (2007). Relationship between physicochemical properties, lipophilicity parameters, and local anesthetic activity of dibasic esters of phenylcarbamic acid. Chemical Papers, 61, 206–213. DOI: 10.2478/s11696-007-0021-8.

    Article  Google Scholar 

  • Parr, R. G., & Wang, W. (1994) Density-functional theory of atoms and molecules, p. 352. New York: Oxford University Press.

    Google Scholar 

  • Parr, R. G., & Wang, W. (1995). Density-functional theory of the electronic structure of the molecules. Annual Review of Physical Chemistry, 46, 701–728. DOI: 10.1146/annurev.pc.46.100195.003413.

    Article  CAS  Google Scholar 

  • Tang, Q. Y., & Feng, M. G. (2002). Practical statistics and DPS data processing system. Beijing: Science.

    Google Scholar 

  • Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y.

    Article  CAS  Google Scholar 

  • Yu, X. L., Yi, B., Wang, X. Y., & Xie, Z. M. (2007a). Correlation between the glass transition temperatures and multipole moments for polymers. Chemical Physics, 332, 115–118. DOI: 10.1016/j.chemphys.2006.11.029.

    Article  CAS  Google Scholar 

  • Yu, X. L., Yi, B., Xie, Z. M., Wang, X. Y., & Liu, F. (2007b). Prediction of the conformational property for polymers using quantum chemical descriptors. Chemometrics and Intelligent Laboratory Systems, 87, 247–251. DOI: 10.1016/j.chemolab.2007.03.001.

    Article  CAS  Google Scholar 

  • Yu, X. L., Xie, Z. M., Yi, B., Wang, X. Y., & Liu, F. (2007c). Prediction of the thermal decomposition property of polymers using quantum chemical descriptors. European Polymer Journal, 43, 818–823. DOI: 10.1016/j.eurpolymj.2006.12.031.

    Article  CAS  Google Scholar 

  • Yu, X. L., Yi, B., & Wang, X.Y. (2007d). Prediction of refractive index of vinyl polymers by using density functional theory. Journal of Computational Chemistry, 28, 2336–2341. DOI: 10.1002/jcc.20752.

    Article  CAS  Google Scholar 

  • Yu, X. L., Yi, B., Yu, W. H., & Wang, X. Y. (2008a). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3.

    Article  CAS  Google Scholar 

  • Yu, X. L., Liu, W. Q., Liu, F., & Wang, X. Y. (2008b). DFT-based theoretical QSPR models of Q-e parameters for the prediction of reactivity in free-radical copolymerizations. Journal of Molecular Modelling, 14, 1065–1070. DOI: 10.1007/s00894-008-0339-3.

    Article  CAS  Google Scholar 

  • Yu, X. L., Yi, B., Liu, F., & Wang, X. Y. (2008c). Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation. Reactive and Functional Polymers, 68, 1557–1562. DOI:10.1016/j.reactfunctpolym.2008.08.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Yu, W., Yi, B. et al. Artificial neural network prediction of steric hindrance parameter of polymers. Chem. Pap. 63, 432–437 (2009). https://doi.org/10.2478/s11696-009-0036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0036-4

Keywords

Navigation