Skip to main content

Advertisement

Log in

Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The biopolymer (polyhydroxybutyrate) microparticles-calcium phosphate composites were prepared by mechanical mixing of the basic composite components with the addition of hardening liquid after ethanol-composite mixture suspension moulding. The composite microstructures were more compact than the pure cement samples as confirmed by the lower values of specific areas and mesopore volumes. Both the specific areas and mesopore volumes decreased with soaking time in a simulated body fluid. The low polyhydroxybutyrate degradation in composites was found after soaking in simulated body fluid, which was terminated after one week. The formation of a dense apatite layer bonded directly to the surface of polyhydroxybutyrate microparticles was observed. The highest diametral tensile strength (13 MPa) and compressive strength (95 MPa) values of up to 50 % higher than in pure cement were measured in samples with 10 % of polyhydroxybutyrate. The addition of polyhydroxybutyrate microparticles had no effect on the setting time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380. DOI: 10.1021/ja01145a126.

    Article  CAS  Google Scholar 

  • Boeree, N. R., Dove, J., Cooper, J. J., Knowles, J., & Hasting, G. W. (1993). Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatitepolyhydroxybutyrate composite material. Biomaterials, 14, 793–796. DOI: 10.1016/0142-9612(93)90046-5.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319. DOI: 10.1021/ja01269a023.

    Article  CAS  Google Scholar 

  • Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26, 6565–6578. DOI: 10.1016/j.biomaterials.2005.04.036.

    Article  CAS  Google Scholar 

  • Chen, L. J., & Wang, M. (2002). Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials, 23, 2631–2639. DOI: 10.1016/S0142-9612(01)00394-5.

    Article  CAS  Google Scholar 

  • Csomorová, K., Rychlý, J., Bakoš, D., & Janigová, I. (1994). The effect of inorganic additives on the decomposition of poly (beta-hydroxybutyrate) into volatile products. Polymer Degradation and Stability, 43, 441–446. DOI: 10.1016/0141-3910(94)90017-5.

    Article  Google Scholar 

  • Dickens-Venz, S. H., Takagi, S., Chow, L. C., Bowen, R. L., Johnston, A. D., & Dickens, B. (1994). Physical and chemical properties of resin-reinforced calcium phosphate cements. Dental Materials, 10, 100–106. DOI: 10.1016/0109-5641(94)90048-5.

    Article  CAS  Google Scholar 

  • Donatello, S., Tyrer, M., & Cheeseman, C. R. (2009). Recent developments in macro-defect-free (MDF) cements. Construction and Building Materials, 23, 1761–1767. DOI: 10.1016/j.conbuildmat.2008.09.001.

    Article  Google Scholar 

  • Drábik, M. (2009). Contribution of materials chemistry to the knowledge of macro-defect-free (MDF) materials. Pure and Applied Chemistry, 81, 1413–1421. DOI: 10.1351/PAC-CON-08-07-16.

    Article  Google Scholar 

  • Doyle, C., Tanner, E. T., & Bonfield, W. (1991). In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials, 12, 841–847. DOI: 10.1016/0142-9612(91)90072-I.

    Article  CAS  Google Scholar 

  • Everett, D. H. (1972). Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31, 577–638. DOI: 10.1351/pac197231040577.

    Article  Google Scholar 

  • Galego, N., Rozsa, C. H., Sánchez, R., Fung, J., Vázquez, A., & Tomás, J. S. (2000). Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polymer Testing, 19, 485–492. DOI: 10.1016/S0142-9418(99)00011-2.

    Article  CAS  Google Scholar 

  • Harkins, W. D., & Jura, G. (1944). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society, 66, 1366–1373. DOI: 10.1021/ja01236a048.

    Article  CAS  Google Scholar 

  • Heidemann, W., Jeschkeit, S., Ruffieux, K., Fischer, J. H., Wagner, M., Krüger, G., Wintermantel, E., & Gerlach, K. L. (2001). Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials, 22, 2371–2381. DOI: 10.1016/S0142-9612(00)00424-5.

    Article  CAS  Google Scholar 

  • International Organization for Standardization (1978). Dental zinc phosphate cements. ISO1566. Geneva, Switzerland.

  • Linhart, W., Lehmann, W., Siedler, M., Peters, F., Schilling, A. F., Schwarz, K., Amling, M., Rueger, J. M., & Epple, M. (2006). Composites of amorphous calcium phosphate and poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) for bone substitution: assessment of the biocompatibility. Journal of Materials Science, 41, 4806–4813. DOI: 10.1007/s10853-006-0023-x.

    Article  CAS  Google Scholar 

  • Linhart, W., Peters, F., Lehmann, W., Schwarz, K., Schilling, A. F., Amling, M., Rueger, J. M., & Epple, M. (2001). Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. Journal of Biomedical Materials Research Part A, 54, 162–171. DOI: 10.1002/1097-4636(200102)54:2〈162::AID-JBM2〉3.0. CO;2-3.

    Article  CAS  Google Scholar 

  • Matsuya, Y., Antonucci, J. M., Matsuya, S., Takagi, S., & Chow, L. C. (1996). Polymeric calcium phosphate cements derived from poly(methyl vinyl ether-maleic acid). Dental Materials, 12, 2–7. DOI: 10.1016/S0109-5641(96)80056-X.

    Article  CAS  Google Scholar 

  • Mauli Agrawal, C., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLG-PGA implants. Journal of Biomedical Materials Research Part A, 38, 105–114. DOI: 10.1002/(SICI)1097-4636(199722)38:2〈105::AIDJBM4〉3.0.CO;2-U.

    Article  Google Scholar 

  • Medvecký, Ľ., Štulajterová, R., Briančin, J., & Ďurišin, J. (2009). The effect of modification of KH2PO4 hardening liquid with H3PO4 and chitosan on setting reactions and compressive strength of calcium phosphate cement. Materials Science and Engineering: C, 29, 2493–2501. DOI: 10.1016/j.msec.2009.07.016.

    Article  Google Scholar 

  • Miyazaki, K., Horibe, T., Antonucci, J. M., Takagi, S., & Chow, L. C. (1993a). Polymeric calcium phosphate cements: setting reaction modifiers. Dental Materials, 9, 46–50. DOI: 10.1016/0109-5641(93)90105-Y.

    Article  CAS  Google Scholar 

  • Miyazaki, K., Horibe, T., Antonucci, J. M., Takagi, S., & Chow, L. C. (1993b). Polymeric calcium phosphate cements: analysis of reaction products and properties. Dental Materials, 9, 41–45. DOI: 10.1016/0109-5641(93)90104-X.

    Article  CAS  Google Scholar 

  • Neumann, M., & Epple, M. (2006). Composites of calcium phosphate and polymers as bone substitution materials. European Journal of Trauma, 32, 125–131. DOI: 10.1007/s00068-006-6044-y.

    Article  Google Scholar 

  • Ni, J., & Wang, M. (2002). In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Materials Science and Engineering: C, 20, 101–109. DOI: 10.1016/S0928-4931(02)00019-X.

    Article  Google Scholar 

  • Padermshoke, A., Katsumoto, Y., Sato, H., Ekgasit, S., Nodad, I., & Ozaki, Y. (2005). Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 541–550. DOI: 10.1016/j.saa.2004.05.004.

    Article  Google Scholar 

  • Park, M. S., Eanes, E. D., Antonucci, J. M., & Skrtic, D. (1998). Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites. Dental Materials, 14, 137–141. DOI: 10.1016/S0109-5641(98)00020-7.

    Article  CAS  Google Scholar 

  • Qi, X., & Ye, J. (2009). Mechanical and rheological properties and injectability of calcium phosphate cement containing poly (lactic-co-glycolic acid) microspheres. Materials Science and Engineering: C, 29, 1901–1906. DOI: 10.1016/j.msec.2009.02.021.

    Article  CAS  Google Scholar 

  • Qi, X., Ye, J., & Wang, Y. (2008). Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta Biomaterialia, 4, 1837–1845. DOI: 10.1016/j.actbio.2008.05.009.

    Article  CAS  Google Scholar 

  • Ribeiro, C. C., Gibson, I., & Barbosa, M. A. (2006). The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms. Biomaterials, 27, 1749–1761. DOI: 10.1016/j.biomaterials.2005.09.043.

    Article  CAS  Google Scholar 

  • Ruhé, P. Q., Hedberg, E. L., Padron, E. N., Spauwen, P. H. M., Jansen, J. A., & Mikos, A. G. (2005). Biocompatibility and degradation of poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites. Journal of Biomedical Materials Research Part A, 74A, 533–544. DOI: 10.1002/jbm.a.30341.

    Article  Google Scholar 

  • Sánchez-Salcedo, S., Balas, F., Izquierdo-Barba, I., & Vallet-Regí, M. (2009). In vitro structural changes in porous HA/β-TCP scaffolds in simulated body fluid. Acta Biomaterialia, 5, 2738–2751. DOI: 10.1016/j.actbio.2009.03.025.

    Article  Google Scholar 

  • Schiller, C., & Epple, M. (2003). Carbonated calcium phosphates are suitable pH-stabilizing fillers for biodegradable polyesters. Biomaterials, 24, 2037–2043 (2003). DOI: 10.1016/S0142-9612(02)00634-8.

    Article  CAS  Google Scholar 

  • Schiller, C., Rasche, C., Wehmöller, M., Beckmann, F., Eufinger, H., Epple, M., & Weihe, S. (2004). Geometrically structured implants for cranial reconstruction made of biodegradable polyesters and calcium phosphate/calcium carbonate. Biomaterials, 25, 1239–1247. DOI: 10.1016/j.biomaterials. 2003.08.047.

    Article  CAS  Google Scholar 

  • Simon, C. G., Khatri, C. A., Wight, S. A., & Wang, F. W. (2002). Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. Journal of Orthopaedic Research, 20, 473–482. DOI: 10.1016/S0736-0266(01)00140-1.

    Article  CAS  Google Scholar 

  • Skinner, J. C., Prosser, H. J., Scott, R. P., & Wilson, A. D. (1986). Adhesion of carboxylate cements to hydroxyapatite: I. The effect of the structure of aliphatic carboxylates on their uptake by hydroxyapatite. Biomaterials, 7, 438–440. DOI: 10.1016/0142-9612(86)90031-1.

    Article  CAS  Google Scholar 

  • Takagi, S., Chow, L. C., Hirayama, S., & Eichmiller, F. C. (2003). Properties of elastomeric calcium phosphate cement-chitosan composites. Dental Materials, 19, 797–804. DOI: 10.1016/S0109-5641(03)00028-9.

    Article  CAS  Google Scholar 

  • Tas, A. C. (2000). Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials, 21, 1429–1438. DOI: 10.1016/S0142-9612(00)00019-3.

    Article  CAS  Google Scholar 

  • Verheyen, C. C. P. M., deWijn, J. R., Van Blitterswijk, C. A., & De Groot, K. (1992). Evaluation of hydroxylapatite/poly(llactide) composites: Mechanical behaviour. Journal of Biomedical Materials Research Part A, 26, 1277–1296. DOI: 10.1002/jbm.820261003.

    Article  CAS  Google Scholar 

  • Wang, M., Chen, L. J., Ni, J., Weng, J., & Yue, C. Y. (2001). Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 12, 855–860. DOI: 10.1023/A:1012899318688.

    Article  CAS  Google Scholar 

  • Wang, Y.-W., Wu, Q., Chen, J., & Chen, G.-Q. (2005). Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials, 26, 899–904. DOI: 10.1016/j.biomaterials.2004.03.035.

    Article  CAS  Google Scholar 

  • Weihe, S., Wehmöller, M., Tschakaloff, A., von Oepen, R., Schiller, C., Epple, M., & Eufinger, H. (2001) Alternative Knochenersatzmaterialien zur präoperativen Fertigung individueller CAD/CAM-Schädelimplantate. Mund-, Kieferund Gesichtschirurgie, 5, 299–304. DOI: 10.1007/s100060100 324.

    Article  CAS  Google Scholar 

  • Yu, J., Plackett, D., & Chen, L. X. L. (2005). Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polymer Degradation and Stability, 89, 289–299. DOI: 10.1016/j.polymdegradstab.2004.12.026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Medvecký.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvecký, Ľ., Štulajterová, R. & Kutsev, S.V. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites. Chem. Pap. 65, 667–675 (2011). https://doi.org/10.2478/s11696-011-0044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0044-z

Keywords

Navigation