Skip to main content
Log in

Simultaneous determination of metal traces by ICP-MS in environmental waters using SPE preconcentration on different polymeric sorbents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This paper deals with multielement profiling of microlements in the form of their isotopes 9Be, 51V, 59Co, 60Ni, 89Y, 111Cd, 208Pb, 232Th, and 238U. After their complexation by 4-(2-pyridylazo)resorcinol (PAR), 3,4-dihydroxy-9,10-dioxo-2-anthracenesulfonic acid sodium salt (ALS), 8-hydroxyquinoline-5-sulphonic acid (8-HQS), and ammonium pyrrolidinedithiocarbamate (APDC), the elements were preconcentrated and separated on Amberlite XAD-16 and Amberlite SDB-L prior to their analysis by inductively coupled plasma mass spectrometry. Various parameters such as pH, eluent type and volume, presence of surfactants and volume, and matrix effects on the retention of analytes were examined. Relative standard deviation and recovery values for four replicate determinations under optimal condition were in the range of 0.2–3.6 % and 59–98 %. The proposed method was applied to the determination of elements in lake water sample and industrial water. Recovery experiments with spiked water samples were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardaneh, K., Saal, D., Swarts, G., & Dewindt, S. C. (2008). TBP and TBP impregnated XAD-4 resin for radiochemical separation 88Y from Sr and Al. Journal of Radioanalytical and Nuclear Chemistry, 275, 665–669. DOI: 10.1007/s10967-007-7074-6.

    Article  CAS  Google Scholar 

  • Abbasse, G., Ouddane, B., & Fischer, J. (2002). Determination of trace levels of dissolved vanadium in seawater by use of synthetic complexing agents and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Analytical and Bioanalytical Chemistry, 374, 873–878. DOI: 10.1007/s00216-002-1532-3.

    Article  CAS  Google Scholar 

  • Balaram, V. (1993). Characterization of trace elements in environmental samples by ICP-MS. Atomic Spectroscopy, 14, 174–179.

    CAS  Google Scholar 

  • Bulut, V. N., Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Elci, L., & Tufekci, M. (2007). A multielement solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000. Journal of Hazardous Materials, 146, 155–163. DOI: 10.1016/j.jhazmat.2006.12.013.

    Article  CAS  Google Scholar 

  • Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta B: Atomic Spectroscopy, 58, 1177–1233. DOI: 10.1016/s0584-8547(03)00072-7.

    Article  Google Scholar 

  • Çekiç, S. D., Filik, H., & Apak, R. (2004). Use of an o-aminobenzoic acid-functionalized XAD-4 copolymer resin for the separation and preconcentration of heavy metal(II) ions. Analytica Chimica Acta, 505, 15–24. DOI: 10.1016/s0003-2670(03)00211-3.

    Article  Google Scholar 

  • Chen, J. H., Kao, Y. Y., & Lin, C. H. (2003). Selective separation of vanadium from molybdenum using D2EHPA-immobilized Amberlite XAD-4 resin. Separation Science and Technology, 38, 3827–3852. DOI: 10.1081/ss-120024234.

    Article  CAS  Google Scholar 

  • Dean, R. B., & Dixon, W. J. (1951). Simplified statistics for small numbers of observations. Analytical Chemistry, 23, 636–638. DOI: 10.1021/ac60052a025.

    Article  CAS  Google Scholar 

  • Demirel, N., Merdivan, M., Pirinccioglu, N., & Hamamci, C. (2003). Thorium(IV) and uranium(VI) sorption on octacarboxymethyl-C-methylcalix[4]resorcinarene impregnated on a polymeric support. Analytica Chimica Acta, 485, 213–219. DOI: 10.1016/s0003-2670(03)00415-x.

    Article  CAS  Google Scholar 

  • Dressler, V. L., Rozebom, D., & Curtius, A. J. (1998). Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration. Spectrochimica Acta B: Atomic Spectroscopy, 53, 1527–1539. DOI: 10.1016/s0584-8547(98)00180-3.

    Article  Google Scholar 

  • Elci, L., Soylak, M., & Dogan, M. (1992). Preconcentration of trace metals in river waters by the application of chelate adsorption on Amberlite XAD-4. Fresenius Journal of Analytical Chemistry, 342, 175–178. DOI: 10.1007/bf00321717.

    Article  CAS  Google Scholar 

  • Farahmand, A. R., Yousefi, S. R., Fumani, N. S., Mirza, S., Shamsipur, M., & Hassan, J. (2009). Preconcentration of beryllium via octadecyl silica gel microparticles doped with aluminon, and its determination by flame atomic absorption spectrometry. Microchimica Acta, 166, 89–94. DOI: 10.1007/s00604-009-0175-x.

    Article  CAS  Google Scholar 

  • Filik, H., Berker, K. I., Balkis, N., & Apak, R. (2004). Simultaneous preconcentration of vanadium(V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2-pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta, 518, 173–179. DOI: 10.1016/j.aca.2004.05.012.

    Article  CAS  Google Scholar 

  • Ghasemi, J. B., & Zolfonoun, E. (2010). Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by α-benzoin oxime modified Amberlite XAD-2000 resin. Talanta, 80, 1191–1197. DOI: 10.1016/j.talanta.2009.09.007.

    Article  CAS  Google Scholar 

  • Gok, C., Seyham, S., Merdivan, M., & Yurdakoc, M. (2007). Separation and preconcentration of La3+, Ce3+ and Y3+ using calix[4]resorcinarene impregnated on polymeric support. Microchimica Acta, 157, 13–19. DOI: 10.1007/s00604-006-0646-2.

    Article  CAS  Google Scholar 

  • Goswami, A., Singh, A. K., & Venkataramani, B. (2003). 8-Hydroxyquinoline anchored to silica gel via new moderate size linker: synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination. Talanta, 60, 1141–1154. DOI: 10.1016/s0039-9140(03)00218-2.

    Article  CAS  Google Scholar 

  • Gundogdu, A., Duran, C., Senturk, H. B., Elci, L., & Soylak, M. (2007). Simultaneous preconcentration of trace metals in environmental samples using Amberlite XAD-2010/8-hydroxyquinoline system. Acta Chimica Slovenica, 54, 308–316.

    CAS  Google Scholar 

  • Hirose, K. (1988). Determination of thorium isotopes in seawaters by using preconcentration of thorium-XO complexes on XAD-2 resin. Journal of Radioanalytical and Nuclear Chemistry, 127, 199–207. DOI: 10.1007/bf02164865.

    Article  CAS  Google Scholar 

  • Iglesias, M., Anticó, E., & Salvadó, V. (2001). Sepration af yttrium and neodymium from nitrate solutions by di(2-ethylhexyl)-phosphoric acid impregnated on Amberlite XAD-2 resin. In Proceedings of ISEC ′99, Solvent Extraction for the 21st Century, July 11–16, 1999 (pp. 1115–1120). Barcelona, Spain: Society of Chemical Industry.

    Google Scholar 

  • Jain, V. K., Handa, A., Sait, S. S., Shrivastav, P., & Agrawal, Y. K. (2001). Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Analytica Chimica Acta, 429, 237–246. DOI: 10.1016/s0003-2670(00)01299-x.

    Article  CAS  Google Scholar 

  • Jambor, J., & Javorek, T. (1993). Simultaneous sorption of chelates of elements with organic reagents on amberlit XAD-2 as a preconcentration step for the emission spectrometric determination of the elements. Collection of Czechoslovak Chemical Communications, 58, 1821–1831. DOI: 10.1135/cccc19931821.

    Article  CAS  Google Scholar 

  • Kasahara, I., Takayama, N., Yamamoto, H., Sakurai, K., & Taguchi, S. (1997). Synthesis of silica-gel immonbilized 8-quinolinol using 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline and 4-aminobenzoic acid and its application to a column preconcentration/determination of trace vanadium in water by ICP-AES. Bunseki Kagaku, 46, 211–215. DOI: 10.2116/bunsekikagaku.46.211.

    Article  CAS  Google Scholar 

  • Karbasi, M. H., Jahanparast, B., Shamsipur, M., & Hassan, J. (2009). Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel. Journal of Hazardous Materials, 170, 151–155. DOI: 10.1016/j.jhazmat.2009.04.119.

    Article  CAS  Google Scholar 

  • Kumar, M., Rathore, D. P. S., & Singh, A. K. (2001). Pyrogallol immobilized Amberlite XAD-2: A newly designed collector for enrichment of metal ions prior to their determination by flame atomic absorption spectrometry. Microchimica Acta, 137, 127–134. DOI: 10.1007/s006040170002.

    Article  CAS  Google Scholar 

  • Lee, W., Yook, J. K., Lee, S. E., & Lee, Ch. H. (2000). Selective separation of Zr(IV) and Th(IV) by (polystarenedivinylbenzen)-thiazolylazo chelating resins (I). Analytical Science and Technology, 13, 323–331.

    CAS  Google Scholar 

  • Lemos, V. A., da Silva D. G., de Carvalho, A. L., de Andare Santana, D., dos Santos Novaes, G., & dos Passos, A. S. (2006). Synthesis of amberlite XAD-2-PC resin for preconcetration and determination of trace elements in food samples by flame atomic absorption spectrometry. Microchemical Journal, 84, 14–21. DOI: 10.1016/j.microc.2006.03.006.

    Article  CAS  Google Scholar 

  • McLaren, J. W., Lam, J. W. H., Berman, S. S., Akatsuka, K., & Azeredo, M. A. (1993). On-line method for the analysis of sea-water for trace elements by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 8, 279–286. DOI: 10.1039/ja9930800279.

    Article  CAS  Google Scholar 

  • Nelms, S. M., Greenway, G. M., & Hutton, R. C. (1995). Application of multi-element time-resolved analysis to a rapid online matrix separation system for inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 10, 929–933. DOI: 10.1039/ja9951000929.

    Article  CAS  Google Scholar 

  • de Magalhães Padilha, P., de Melo Gomes, L. A., Padilha, C. C. F., Moreira, J. C., & Filho, N. L. D. (1999). Determination of metal ions in natural waters by flame-AAS after preconcentration on a 5-amino-1,3,4-thiadiazole-2-thiol modified silica gel. Analytical Letters, 32, 1807–1820. DOI: 10.1080/00032719908542935.

    Article  Google Scholar 

  • Peng, H. W., & Kuo, M. S. (2000). Determination of trace amounts of beryllium(II) in drinking water and of beryllium vapor in air by graphite-furnace atomic absorption spectrophotometry using acetylacetone as a chelating agent. Analytical Sciences, 16, 157–161. DOI: 10.2116/analsci.16.157.

    Article  CAS  Google Scholar 

  • Prabhakaran, D., & Subramanian, M. S. (2005). Synthesis, characterization and metal extractive behavior of functionalized AXAD-16 polymeric matrix using oxyacetone acetamide. Separation Science and Technologie, 39, 941–957. DOI: 10.1081/ss-120028455.

    Article  Google Scholar 

  • Seyhan, S., Merdivan, M., & Demirel, N. (2008). Use of ophenylene dioxydiacetic acid impregnated in amberlite XAD resin for separation and preconcentration of uranium(VI) and thorium(IV). Journal of Hazardous Metarials, 152, 79–84. DOI: 10.1016/j.jhazmat.2007.06.065.

    Article  CAS  Google Scholar 

  • Soylak, M., & Akkaya, Y. (2003). Separation/preconcentration of xylenol orange metal complexes on Amberlite XAD-16 column for their determination by flame atomic absorption spectrometry. Journal of Trace and Microprobe Techniques, 21, 455–466. DOI: 10.1081/tma-120023062.

    Article  CAS  Google Scholar 

  • Soylak, M., & Elçi, L. (1997). Preconcentration and separation of trace metal ions from sea water samples by sorption on Amberlite XAD-16 after complexation with sodium diehtyl dithiocarbamate. International Journal of Environmental Analytical Chemistry, 66, 51–59. DOI: 10.1080/03067319708026273.

    Article  CAS  Google Scholar 

  • Szczepaniak, W., & Szymanski, A. (1996). Sorption and preconcentration of trace amounts of beryllium from natural waters on silica gel with immobilized morin prior to its determination by ETA-AAS method. Chemia Analityczna, 41, 193–199.

    CAS  Google Scholar 

  • Thermo Elemental (2001). AAS, GFAAS, ICP or ICP-MS? Which technique should I use? In An elementary overview of elemental analysis. Retrieved on 22. 2. 2012 from www.thermo.com/eThermo/CMA/PDFs/Articles/articlesFile18407.pdf

  • Tokahoglu, S., Cetin, V., & Kartal, S. (2008). Amberlite XAD-1180 modified with thiosalicylic acid: A new chelating resin for separation and preconcentration of trace metal ions. Chemia Analityczna, 53, 263–276.

    Google Scholar 

  • Tzvetkova, P., Vassileva, P., & Nickolov, R. (2010). Modified silica gel with 5-amino-1,3,4-thiadiazole-2-thiol for heavy metal ions removal. Journal of Porous Materials, 17, 459–463. DOI: 10.1007/s10934-009-9308-1.

    Article  CAS  Google Scholar 

  • Yamini, Y., Hassan, J., Mohandesi, R., & Bahramifar, N. (2002). Preconcentration of trace amounts of beryllium in water samples on octadecyl silica cartridges modified by quinalizarine and its determination with atomic absorption spectrometry. Talanta, 56, 375–381. DOI: 10.1016/s0039-9140(01)00560-4.

    Article  CAS  Google Scholar 

  • Yousefi, S. R., Ahmadi, S. J., Shemirani, F., Jamali, M. R., & Salavati-Niasari, M. (2009). Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta, 80, 212–217. DOI: 10.1016/j.talanta.2009.06.058.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lumír Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holubová, Z., Moos, M. & Sommer, L. Simultaneous determination of metal traces by ICP-MS in environmental waters using SPE preconcentration on different polymeric sorbents. Chem. Pap. 66, 899–906 (2012). https://doi.org/10.2478/s11696-012-0185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0185-8

Keywords

Navigation