Skip to main content
Log in

Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Phase pure nano nickel oxide was synthesized by the chemical precipitation method and sintered at 200°C, 400°C and 600°C, respectively, to study the effect of sintering on the charge distribution and magnetism. The samples were analyzed by X-ray diffraction for electron density distribution studies, vibrating sample magnetometry for magnetic behavior and by UV-VIS spectrophotometry for optical characteristics. Rearrangement of charge density distribution with respect to sintering temperature was analyzed through the maximum entropy method employed using powder X-ray diffraction data. The observed magnetic transition with respect to the temperature/size effect was analyzed and correlated with electron density distribution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur, J., Sen, D., Mazumder, S., & Ramanathan, S. (2008). Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study. Journal of Solid State Chemistry, 181, 1227–1235. DOI: 10.1016/j.jssc.2008.01.050.

    Article  CAS  Google Scholar 

  • Collins, D. M. (1982). Electron density images from imperfect data by iterative entropy maximization. Nature, 298, 49–51. DOI: 10.1038/298049a0.

    Article  CAS  Google Scholar 

  • Chakrabarty, S., & Chatterjee, K. (2009). Synthesis and characterization of nano-dimensional nickelous oxide (NiO) semiconductor. Journal of Physical Sciences, 13, 245–250.

    Google Scholar 

  • Choudhury, S., Bhuiyan, M. A., & Hoque, S. K. (2012). Effect of sintering temperature on apparent density and transport properties of NiFe2O4: Synthesized from nanosize powder of NiO and Fe2O3. International Nano Letters, 2, 6. DOI: 10.1186/2228-5326-2-6.

    Article  Google Scholar 

  • Davar, F., Fereshteh, Z., & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476, 797–801. DOI: 10.1016/j.jallcom.2008.09.121.

    Article  CAS  Google Scholar 

  • Guo, W., Hui, K. N., & Hui, K. S. (2013). High conductivity nickel oxide thin films by a facile sol-gel method. Materials Letters, 92, 291–295. DOI: 10.1016/j.matlet.2012.10.109.

    Article  CAS  Google Scholar 

  • Granqvist, C. G. (1995). Handbook of inorganic electrochromic materials. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95, 5031–5041. DOI: 10.1021/j100166a025.

    Article  CAS  Google Scholar 

  • Hotovy, I., Huran, J., Spiess, L., Romanus, H., Buc, D., & Kosiba, R. (2006). NiO-based nanostructured thin films with Pt surface modification for gas detection. Thin Solid Films, 515, 658–661. DOI: 10.1016/j.tsf.2005.12.232.

    Article  CAS  Google Scholar 

  • Justin, P., Meher, S. K., & Rao, G. R. (2010). Tuning of capacitance behavior of NiO using anionic, cationic and nonionic surfactants by hydrothermal synthesis. The Journal of Physical Chemistry C, 114, 5203–5210. DOI: 10.1021/jp9097155.

    Article  CAS  Google Scholar 

  • Kodama, R. H., Makhlouf, S. A., & Berkowitz, A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Physical Review Letters, 79, 1393–1396. DOI: 10.1103/physrevlett.79.1393.

    Article  CAS  Google Scholar 

  • Li, Q., Wang, L. S., Hu, B. Y., Yang, C., Zhou, L., & Zhang, L. (2007). Preparation and characterization of NiO nanoparticles through calcination of malate gel. Materials Letters, 61, 1615–1618. DOI: 10.1016/j.matlet.2006.07.113.

    Article  CAS  Google Scholar 

  • Mahaleh, Y. B. M., Sadrnezhaad, S. K., & Hosseini, D. (2008). NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Journal of Nanomaterials, 2008, 470595. DOI: 10.1155/2008/470595.

    Google Scholar 

  • Manikandan, A., Vijaya, J. J., & Kennedy, L. J. (2013). Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 49, 117–123. DOI: 10.1016/j.physe.2013.02.013.

    Article  CAS  Google Scholar 

  • McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32, 36–50. DOI: 10.1107/s0021889898009856.

    Article  CAS  Google Scholar 

  • Min, K. C., Kim, M., You, Y. H., Lee, S. S., Lee, Y. K., Chung, T. M., Kim, C. G., Hwang, J. H., An, K. S., Lee, N. S., & Kim, Y. (2007). NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena. Surface and Coatings Technology, 201, 9252–9255. DOI: 10.1016/j.surfcoat.2007.04.120.

    Article  CAS  Google Scholar 

  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. DOI: 10.1107/s0021889811038970.

    Article  CAS  Google Scholar 

  • Nathan, T., Aziz, A., Noor, A. F., & Prabaharan, S. R. S. (2008). Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. Journal of Solid State Electrochemistry, 12, 1003–1009. DOI: 10.1007/s10008-007-0465-3.

    Article  CAS  Google Scholar 

  • Needham, S. A., Wang, G. X., & Liu, H. K. (2006). Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159, 254–257. DOI: 10.1016/j.jpowsour.2006.04.025.

    Article  CAS  Google Scholar 

  • Ni, X., Zhang, Y., Tian, D., Zheng, H., & Wang, X. (2007). Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. Journal of Crystal Growth, 306, 418–421. DOI: 10.1016/j.jcrysgro.2007.05.013.

    Article  CAS  Google Scholar 

  • Nėel, L. (1962). In C. DeWitt, B. Dreyfus, P. D. de Gennes (Eds.) Low temperature physics. (pp. 413). New York, NY, USA: Gordon and Beach.

  • Pancove, J. I. (1971). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice Hall.

    Google Scholar 

  • Peng, T. C., Xiao, X. H., Hand, X. Y., Zhou, X. D., Wu, W., Ren, F., & Jiang, C. Z. (2011). Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry. Applied Surface Science, 257, 5908–5912. DOI: 10.1016/j.apsusc.2011.01.138.

    Article  CAS  Google Scholar 

  • Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006, the crystallographic computing system. Praha, Czech Republic: Academy of Sciences of the Czech Republic.

    Google Scholar 

  • Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558.

    Article  CAS  Google Scholar 

  • Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., & Yavarinia, N. (2009). Preparation of NiO nanoparticles from metal-organic frameworks via a solidstate decomposition route. Inorganica Chimica Acta, 362, 3691–3697. DOI: 10.1016/j.ica.2009.04.025.

    Article  CAS  Google Scholar 

  • Saravanan, R., Francis, S., & Berchmans, J. L. (2012). Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization and local structure. Chemical Papers, 66, 226–234. DOI: 10.2478/s11696-011-0129-8.

    Article  CAS  Google Scholar 

  • Scherrer, P. (1918). Bestimmung der Gröse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 98–100. (in German)

    Google Scholar 

  • Smart, J. S., & Greenwald, S. (1951). Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Physical Review, 82, 113–114. DOI: 10.1103/physrev.82.113.

    Article  CAS  Google Scholar 

  • Tadić, M., Panjan, M., Marković, D., Milošević, I., & Spasojević, V. (2011). Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. Journal of Alloys and Compounds, 509, 7134–7138. DOI: 10.1016/j.jallcom.2011.04.032.

    Article  Google Scholar 

  • Takata, M. (2008). The MEM/Rietveld method with nanoapplications — accurate charge-density studies of nanostructured materials by synchrotron-radiation powder diffraction. Acta Crystallographica Section A, 64, 232–245. DOI: 10.1107/s010876730706521x.

    Article  CAS  Google Scholar 

  • Thota, S., & Kumar, J. (2007). Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles. Journal of Physics and Chemistry of Solids, 68, 1951–1964. DOI: 10.1016/j.jpcs.2007.06.010.

    Article  CAS  Google Scholar 

  • Vaidya, S., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2009). Synthesis of homogeneous NiO/SiO2 core-shell nanostructures and the effect of shell thickness on the magnetic properties. Crystal Growth & Design, 9, 1666–1670. DOI: 10.1021/cg800881p.

    Article  CAS  Google Scholar 

  • Verma, V., & Katiyar, M. (2013). Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films, 527, 369–376. DOI: 10.1016/j.tsf.2012.12.020.

    Article  CAS  Google Scholar 

  • Wang, W. Z., Liu, Y. K., Xu, C. K., Zheng, C. L., & Wang, G. H. (2002). Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chemical Physics Letters, 362, 119–122. DOI: 10.1016/s0009-2614(02)00996-x.

    Article  CAS  Google Scholar 

  • Wang, W. N., Itoh, Y., Lenggoro, I. W., & Okuyama, K. (2004). Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering: B, 111, 69–76. DOI: 10.1016/j.mseb.2004.03.024.

    Article  Google Scholar 

  • Winkler, E., Zysler, R. D., Mansilla, M. V., & Fiorani, D. (2005). Surface anisotropy effects in NiO nanoparticles. Physical Review B, 72, 132409. DOI: 10.1103/physrevb.72.132409.

    Article  Google Scholar 

  • Wu, Y., He, Y. M., Wu, T. H., Chen, T., Weng, W. Z., & Wan, H. L. (2007). Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Materials Letters, 61, 3174–3178. DOI: 10.1016/j.matlet.2006.11.018.

    Article  CAS  Google Scholar 

  • Xin, X. S., Lü, Z., Zhou, B. B., Huang, X. Q., Zhu, R. B., Sha, X. Q., Zhang, Y. H., & Su, W. H. (2007). Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO. Journal of Alloys and Compounds, 427, 251–255. DOI: 10.1016/j.jallcom.2006.02.064.

    Article  CAS  Google Scholar 

  • Yang, H. M., Tao, Q. F., Zhang, X. C., Tang, A. D., & Ouyang, J. (2008). Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of Alloys Compounds, 459, 98–102. DOI: 10.1016/j.jallcom.2007.04.258.

    Article  CAS  Google Scholar 

  • Zheng, Y. Z., & Zhang, M. L. (2007). Preparation and electrochemical properties of nickel oxide by molton-salt synthesis. Materials Letters, 61, 3967–3969. DOI: 10.1016/j.matlet.2006.12.072.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanakumar, S., Saravanan, R. & Sasikumar, S. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO. Chem. Pap. 68, 788–797 (2014). https://doi.org/10.2478/s11696-013-0519-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0519-1

Keywords

Navigation