Skip to main content
Log in

A Concept of Cantilevers Optical Dimension for Optimal Application to Cantilever-Based Near-Field Scanning Optical Microscope and Its Measurement

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A guide to the selection of the apertured cantilever probe and the numerical aperture of objective lens used in a near-field scanning optical microscope (NSOM) is suggested by defining the Optical dimension of conventional cantilever probe, for achieving highest optical image contrast. An optimized combination between the geometry of the cantilever probe and numerical aperture of the objective lens should be decided for conventional optical head assembly of AFM-based NSOM consisting of cantilever probe and high numerical aperture objective lens, to ensure the light scattered from the specimen being screened by the umbra of cantilever probe, resulting in the light transmitted through the aperture being collected by the objective only. Here, introduction of the optical dimension of cantilever probe, which defines the power of screening the scattered light by the cantilever, conveniently gives us numerical values denoting probe geometry which is critically correlated with the numerical aperture of objective lens with optimized imaging properties. We provide a standard definition of the cantilevers optical dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Neacsu et al., Nano Lett. 10, 592 (2010).

    Article  ADS  Google Scholar 

  2. L. Wang and X. Xu, Appl. Phys. Lett. 90, 261105 (2007).

    Article  ADS  Google Scholar 

  3. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer and K. W. West, Science 264, 1740 (1994).

    Article  ADS  Google Scholar 

  4. C. L. Jahncke, M. A. Paesler and H. D. Hallen, Appl. Phys. Lett. 67, 2483 (1995).

    Article  ADS  Google Scholar 

  5. R. M. Stockle, Y. D. Suh, V. Deckert and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).

    Article  ADS  Google Scholar 

  6. J. Kerimo, D. M. Adams, P. F. Barbara, D. M. Kaschak and T. E. Mallouk, J. Phys. Chem. B 102, 9451 (1988).

    Article  Google Scholar 

  7. T. Mueller, F. Xia, M. Freitag, J. Tsang and Ph. Avouris, Phys. Rev. B. 79, 245430 (2009).

    Article  ADS  Google Scholar 

  8. A. Valsesia et al., J. Phys. D: Appl. Phys. 40, 2341 (2007).

    Article  ADS  Google Scholar 

  9. S. Werner, O. Rudow, C. Mihalcea and E. Oesterschulze, Appl. Phys. A 66, 367 (1998).

    Article  ADS  Google Scholar 

  10. E. Oesterschulze, O. Rudow, C. Mihalcea, W. Scholz and S. Werner, Ultramicroscopy 71, 85 (1998).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hallym Leading Research Group Support Program of 2017 (HRF-LGR-2017-0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Bong Choi or Doo Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Choi, S.B., Jang, M. et al. A Concept of Cantilevers Optical Dimension for Optimal Application to Cantilever-Based Near-Field Scanning Optical Microscope and Its Measurement. J. Korean Phys. Soc. 74, 637–641 (2019). https://doi.org/10.3938/jkps.74.637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.637

Keywords

Navigation