Skip to main content
Log in

Characterization of a Radiation Source for a Container Inspection System Based on a Dual-Energy RF Linac

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A container inspection system (CIS) is a piece of that uses X-rays to scan inside a cargo container without opening it. These X-rays are generated by Bremsstrahlung which occurs when an electron beam accelerated by using a radio frequency (RF) linear accelerator (linac) hits a metal target. The RF linear accelerator is fed 2856 MHz RF power from a magnetron and accelerates the electron beam so that it attains energies up to 6 and 9 MeV. The linac is designed as standing-wave type linac, and RF power is transferred between cavity cells through side-coupling cells inside the linac. Bremsstrahlung radiation generated at the target penetrates the cargo container, and transmitted X-rays are detected by using detection modules. Detected X-ray signals are post-processed by using imaging software, and finalized images are obtained. The linac cavity was designed and fabricated by the Korea Atomic Energy Research Institute (KAERI), and dual-energy X-rays were successfully generated after RF conditioning. Finally we could obtain scanning images that could be used to distinguish organic from non-organic materials. Diagnostics have been conducted to characterize the electron beam and the X-rays to verify CIS performance and improve the scanning image. In this paper, we discuss the configuration of and performance test results for the X-ray generating linac developed by the KAERI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Hanna, in Proceedings of the Particle Accelerator Conference (New York, USA, 1999), p. 2516.

    Google Scholar 

  2. A. V. Mishin, in Proceedings of the Particle Accelerator Conference (Knoxville, Tennessee, USA, 2005), p. 240.

    Google Scholar 

  3. H. Owen, A. Lomax and S. Jolly, Nucl. Instr. Meth. Phys. Res. A 809, 96 (2016).

    Article  ADS  Google Scholar 

  4. K. Irie, Y. Minowa and S. Sawada, Jpn. J. Appl. Phys. 12, 2 (1973).

    Article  Google Scholar 

  5. A.M.M. Todd, in Proceedings of Linear Accelerator Conference (Chicago, Illinois, USA, 1998), p. 1036.

    Google Scholar 

  6. G. Chen, Nucl. Instr. Meth. Phys. Res. B 241, 810 (2005).

    Article  ADS  Google Scholar 

  7. G. Chen, G. Bennett and D. Perticone, Nucl. Instr. Meth. Phys. Res. B 261, 356 (2007).

    Article  ADS  Google Scholar 

  8. J. Stevenson et al., Nucl. Instr. Meth. Phys. Res. A 652, 124 (2011).

    Article  ADS  Google Scholar 

  9. G. Chen, J. Turner, D. Nisius, K. Holt and A. Brooks, Phys. Proc. 66, 68 (2015).

    Article  ADS  Google Scholar 

  10. A. Y. Saverskiy, D. Dinca and J. M. Rommel, Phys. Proc. 66, 232 (2015).

    Article  ADS  Google Scholar 

  11. A. A. Zavadtsev et al., Instrum. Exper. Tech. 54, 2 (2011).

    Article  Google Scholar 

  12. D. H. Lee et al., Nucl. Instr. Meth. Phys. Res. A 884, 105 (2018).

    Article  ADS  Google Scholar 

  13. B. N. Lee et al., J. Korean Phys. Soc. 64, 205 (2014).

    Article  ADS  Google Scholar 

  14. K. B. Song et al., J.KoreanPhys. Soc. 63, 174 (2013).

    ADS  Google Scholar 

  15. B. N. Lee et al., to be submitted to Nucl. Instr. Meth. Phys. Res. A.

  16. https://doi.org/www.scandinovasystems.com.

  17. https://doi.org/www.aepint.nl.

  18. S. S. Cha et al., J. Korean Phys. Soc. 68, 965 (2016).

    Article  ADS  Google Scholar 

  19. S. S. Cha et al., J. Korean Phys. Soc. 69, 1042 (2016).

    Article  ADS  Google Scholar 

  20. https://doi.org/www.altairusa.com/electronguns.

  21. https://doi.org/www.vareximaging.com.

  22. https://doi.org/www.ptw.de.

Download references

Acknowledgments

This work has been carried out under the nuclear R&D program of the Ministry of Science and ICT of Korea (NRF No. 2017M2A2A4A050182). It is also technically supported by the Radiation Equipment Fabrication Center at the Korea Atomic Energy Research Institute (KAERI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Chae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, M.S., Lee, B.N., Kim, J.H. et al. Characterization of a Radiation Source for a Container Inspection System Based on a Dual-Energy RF Linac. J. Korean Phys. Soc. 74, 642–648 (2019). https://doi.org/10.3938/jkps.74.642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.642

Keywords

Navigation