Skip to main content

Conclusion

We have highlighted here only the very small number of proteases which are known to be involved in gliomas. The astonishing large number of proteases which have not so far been characterized in brain tumors suggest these may also be critical in the pathophysiology of brain tumors. Most of the work herein described is largely descriptive and there are a small number of studies that use either genetic manipulation or specific inhibitors of protease function to clarify their contributions. A great deal of work needs to be done to clarify their roles but preliminary approaches are therapeutically promising and already some protease inhibitors are in clinical trials. Therapeutic approaches which use protease manipulation as potential treatment need to take into account interplay between the various proteases here which may lead to several unintended effects. Finally it is likely that none of these approaches to protease manipulation alone would be entirely effective as treatments in brain tumors and these would need to be combined which other conventional agents approaches such as surgery, radiation and chemotherapy. In spite of these cautionary comments this manipulation of proteases offer a very exciting new avenue of treatment to a group of patients who are desperately in need of better therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Scott, N.B. Rewcastle, P.M.A. Brasher, D. Fulton, N.A. Hagen, J. A. MacKinnon, G. Sutherland, J.G. Cairncross, and P. Forsyth, Long-term glioblastoma multiforme survivors: a population-based study, Can. J. Neurol. Sci. d25:197 (1998).

    Google Scholar 

  2. J. Scott, N.B. Rewcastle, P.M.A. Brasher, D. Fulton, J. A. MacKinnon, M. Hamilton, J.G. Cairncross, and P. Forsyth, Which glioblastoma multiforme patient will become a long-term survivor? A population-based study, Ann. Neurol. 46:183 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. P. Forsyth and J.G. Caimcross, Chemotherapy for malignant gliomas, In: Clinical Neurology, W.K.A. Yung, ed., Bailliere Tindall, London (1996).

    Google Scholar 

  4. A. Giese and M. Westphal, Glioma invasion in the central nervous system, Neurosurgey 39:235 (1996).

    Article  CAS  Google Scholar 

  5. L.A. Liotta, P.S. Steeg, and W.G. Stetler-Stevenson, Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation, Cell 64:327 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. P. Mignatti and D.B. Rifkin, Biology and biochemistry of proteinases in tumour invasion, Physicl. Rev. 73:161 (1993).

    CAS  Google Scholar 

  7. W.G. Stetler-Stevenson, L.A. Liotta, and D.E. Kleiner Jr. Extracellular matrix 6: Role of metalloproteinases in tumour invasion and metastasis. FASEB J. 7:1434–1441 (1993).

    PubMed  CAS  Google Scholar 

  8. J.H. Uhm, N.P. Dooley, J-G. Villemure, and V.W. Yong, Mechanisms of glioma invasion: Role of matrix metalloproteinases, Can. J. Neurol. Sci. 24:3 (1997).

    PubMed  CAS  Google Scholar 

  9. J.F. Woessner, Matrix metalloproteinses and their inhibitors in connective tissue remodeling, FASEB J. 5:2145 (1991).

    PubMed  CAS  Google Scholar 

  10. IO.S. Amavoorian, A.N. Murphy, W.G. Stetler-Stevenson, and L.A. Liotta, Molecular aspects oftumor cell invasion and metastasis, Cancer 71:1368 (1993).

    Article  Google Scholar 

  11. A.M. Pendas, V. Knauper, X.S. Puente, E. Llano, M-G. Mattei, S. Apte, G. Murphy, and C. Lopez-Otin, Identification and characterization of a novel human matrix metallo-proteinase and unique structural characteristics, chromosomal location and tissue distribution, J. Biol. Chem. 272:4281 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. V.W. Yong, C.A. Krekoski, P.A. Forsyth, R. Bell, and D.R. Edwards, Matrix metallo-proteinases and diseases of the CNS, Trends Neurosci. 21:75 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. E.J. Bemhard, S.B. Gruber, and R.J. Muschel, Direct evidence linking expression of matrix metallo-proteinase 9 (92 kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat cells, Proc. Natl. Acad Sci. USA 91:4293 (1994).

    Article  Google Scholar 

  14. B. Davies, J. Waxman, H. Wasan, P. Abel, G. Williams, T. Krausz, D. Neal, D. Thomas Hanby, and F. Balkwill, Levels of matrix metalloproteinases in bladder cancer correlate with tumor grade and invasion, Cancer Res. 53:5365 (1993).

    PubMed  CAS  Google Scholar 

  15. K. J. Heppner, L. M. Matrisian, R. A. Jensen, and W. H. Rodgers, Expression of most MMP family members in breast cancer represents a tumor-induced host response, Am. J. Pathol. 149:273 (1996).

    PubMed  CAS  Google Scholar 

  16. A.E. Kossakowska, S.J. Urbanski, S.A. Huchcroft, and D.R. Edwards, Relationship between the clinical aggressiveness of large cell immunoblastic lymphomas and expression of 92 kDa gelatinase (TypeIV Collagenase) and tissue inhibitor of metalloproteinases-1(TIMP-1) RNAs, Oncol. Res. 4:233 (1992).

    PubMed  CAS  Google Scholar 

  17. J.R. MacDougall and L.M. Matrisian, Contributions of tumor and stromal matrix metallo-proteinases to tumor progression, invasion and metastasis, Cancer Metastasis Rev. 14:351 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. J.W. Becker, A.I. Marcy, L.L. Rokosz, M.G. Axel, J.J. Burbaum, P.M. Fitzgerald, P.M. Cameron, C.K. Esser, W.K. Hagmann, and J.D. Hermes, Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and ofthe C-truncated proenzyme, Protein Sci. 4:1966 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. G. Murphy and V. Knauper, Relating matrix metalloproteinase structure to function: Why the “Hemopexin” domain? Matrix Biol. 15:511 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. J. Li, P. Brick, M.C. O’Hare, T. Skarzynski, L.F. Lloyd V.A. Curry, I.M. Clark, H.F. Bigg, B.L. Hazelman, and T.E. Cawston, Strucure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller, Structure 15:541 (1995).

    Article  Google Scholar 

  21. B. Steffensen, U.M. Wallon, and C.M. Overall, Extra cellular matrix binding properties of recombinant fibronectin type 11-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen, J. Biol. Chem. 270:11555 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. L. Banyai, H. Tordai, and L. Patthyt, The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A), Biochem. J. 298:403 (1994).

    PubMed  CAS  Google Scholar 

  23. A.F. Chambers and L.M. Matrisian, Changing views ofthe role of Matrix metallo-proteinases in metastasis, J Nat’l. Can. Inst. 89:1260 (1997).

    Article  CAS  Google Scholar 

  24. D.E. Kleiner and W.G. Stetler-Stevenson, Structural biochemistry and activation of the matrix metalloproteinases, Curr. Opin. Cell. Biol. 5:891 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. L.M. Matrisian, The matrix-degrading metalloproteinases, Bio Essays 14:455 (1992).

    CAS  Google Scholar 

  26. D.R. Edwards, P.P. Beaudry, T.D. Laing, V. Kowal, K.J. Leco, and M.S. Lim, The rolesoftissue inhibitors of metalloproteinases in tissue remodeling and cell growth, Int. J. Obesity 20:S9 (1996).

    Google Scholar 

  27. P. Huhtala, A. Tuuttila, L.T. Chow, J. Lohi, J. Keski-Oja, and K. Tryggvason, Complete structure of human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 920 and 72-kilodalton enzyme genes in HT 1080 cells, J. Biol. Chem. 266:16485 (1991).

    PubMed  CAS  Google Scholar 

  28. S.M. Wilhelm, I.E. Collier, B.L. Marmer, A.Z. Eisen, G.A. Grant, and G.I. Goldberg, SV40-transformed human lung fibroblasts secrete a 92kDa type IV collagenase which is identical to that secreted by normal human macrophages, J. Biol. Chem. 264:17213 (1989).

    PubMed  CAS  Google Scholar 

  29. U.M. Moll, G.L. Youngleib, K.B. Rosinski, and J.P. Quigley, Tumour promoter stimulated Mr 92,000 gelatinase secreted by normal and malignant human cells: isolation and characterization of the enzyme from HT 1080 tumour cells, Cancer Res. 50:6162 (1990).

    PubMed  CAS  Google Scholar 

  30. H. Sato and M. Seiki, Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells, Oncogene 8:395 (1993).

    PubMed  CAS  Google Scholar 

  31. H. Watanabe, I. Nakanishi, K. Yamashita, T. Hayakawa, and Y. Okada, Matrix metallo-proteinase (92kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion, J. Cell. Sci., 104:991 (1993).

    PubMed  CAS  Google Scholar 

  32. P.R. Mertens, S. Herendza, A.S. Pollock, and D.H. Lovett, Glomerular mesangial cell-specific transactivation of matrix rnetalloproteinse 2 transcription is mediated by YB-I, J. Biol. Chem. 5:22905 (1997).

    Article  Google Scholar 

  33. P.R. Mertens, M.A. Alfonso-Jaume, K. Steinmann, and D.H. Lovett, A synergestic interaction of transcription factors AP2 and YB-1 regulates gelarinase A enhancer-dependent transcription, J. Biol. Chem. 273:32957 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. B. Springrnan, E.L. Angleton, H. Birkedal-Hansen, and H.E. Van Wart, Multiple modes of latent fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation, Proc. Natl. Acad Sci. U.S.A. 87:364 (1990).

    Article  Google Scholar 

  35. L.M. Coussens and Z. Werb, Matrix metalloproteinases and the development of cancer, Chem. Biol. 3:895 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. G.S. Butler, H. Will, S.J. Atkinson, and G. Murphy, Membrane-type-2 matrix metallo-proteinase can initiate the processing of progelatinase A and is regulated by the issue inhibitors of metalloproteinases, Eur. J. Biochem. 244:653 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. K. Imai, E. Ohuchi, T. Aoki, H. Nomura, Y. Fujii, H. Sato, M. Seiki, and Y. Okada, Membranetype matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2, Cancer Res. 56:2707 (1996).

    PubMed  CAS  Google Scholar 

  38. J. Keski-Oja, J. Lohi, A. Tuuttila, K. Truggvason, and T. Vartio, Proteolytic processing of the 72,000-Da type IV collagenase by urokinase plasminogen activator, Exp. Cell. Res. 02:471 (1992).

    Article  Google Scholar 

  39. U.P. Thorgeirsson, L. A. Liotta, T. Kalebic, LM. Margulies, K. Thomas, M. Rios-Candelore, and RG. Russo, Effect of natural proteinase inhibitors and a chemoattractant on tumour cell invasion in vitro, J. Natl. Cancer Inst. 68:1049 (1982).

    Google Scholar 

  40. M. Nakajima, D.R. Welch, P.N. Belloni, G. L. Nicolson, Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenicarcinoma cell clones of differing metastatic potentials, Cancer Res. 47:4869 (1987).

    PubMed  CAS  Google Scholar 

  41. A.J.P. Docherty, A. Lyons, B.J. Smith, E.M. Wright, P.E. Stephens, T.J.R Harria, G. Murphy, and J.J. Reynolds, Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity, Nature 318:66 (1985).

    Article  PubMed  CAS  Google Scholar 

  42. W.G. Stetler-Stevenson, P.D. Brown, M. Onisto, A.T. Levy, and L.A. Liotta, Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and tumor tissues, J. Biol. Chem. 265:13933 (1990).

    PubMed  CAS  Google Scholar 

  43. J.A. Uria, A.A. Ferrando, G. Velasco, J.M.P. Freiji, and C. Lopez-Otin, Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase family, Cancer Res. 54: 2091 (1994).

    PubMed  CAS  Google Scholar 

  44. K.J. Leco, S.S. Apte, T. Taniguchi, S.P. Hawkes, R. Khokha, G.A. Schultz, and D.R. Edwards, Murine tissue inhibitor of metalloproteinase-4 (TIMP-4): cDNA isolation and expression in adult mouse tissues, FEBS Lett. 401: 213 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. D.T. Denhardt, B. Feng, D.R. Edwards, E. Cocuzzi, and U.M. Malyankar, On the paradoxical ability of TIMPs either to inhibit or to promote the development and progression of the malignant phenotype, In: Inhibitors of Metalloproteinases in Development and Disease, S.P. Hawkes, D.R. Edwards, and R. Khokha, eds., Lausanne, Switzerland, (1998).

    Google Scholar 

  46. F.X. Gomis-Ruth, K. Maskos, M. Betz, A. Bergner, R. Huber, K. Suzuki, N. Yoshida, H. Nagase, K. Brew, G.P. Bourenkov, H. Bartunik, and W. Bode, Mechanism of inhibition ofthe human matrix metalloproteinase stromelysis-1 by TIMP-1, Nature 389: 77 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. K.J. Leco, R. Khokha, N. Pavloff, S.P. Hawkes, and D.R. Edwards, Tissue inhibitor of metalloproteinase-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues, J. Biol. Chem. 269: 9352 (1994).

    PubMed  CAS  Google Scholar 

  48. W.Q. Zhao, H. Li., K. Yamashita, X. Guo, T. Hoshino, S. Yoshida, T. Shinya, and T. Hayakawa, Cell cycle-associated accumulation of tissue inhibitor of metalloproteinases-l (TIMP-I) in the nuclei of human gingival fibroblasts, J. Cell. Sci. 111: 1147 (1998).

    PubMed  CAS  Google Scholar 

  49. C.C. Chua and B.H. Chua, Tumor necrosis factor-alpha induces mRNA for collagenase and TIMP in human skin fibroblasts, Connect. Tissue Res. 25: 161 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. M. Lotz and P.A. Guerne, Interleukin-6 induces the synthesis of tissue inhibitor of metallo-proteinases-1/erythroid potentiating activity (TIMP-1/EPA), J. Biol. Chem. 266: 2017 (1991).

    PubMed  CAS  Google Scholar 

  51. K. E. Bachman, J. G. Herman, P.G. Corn, A. Merlo, J. F. Costello, W. K. Cavenee, S. B. Baylin, and J. R. Graff, Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain and other human cancers, Cancer Res. 59: 798 (1999).

    PubMed  CAS  Google Scholar 

  52. G. Murphy, V. Knhper, S. Atkinson, J. Gavrilovic, and D. Edwards, Cellular mechanisms for focal proteolyis and the regulation ofthe microenvironment, Fibrinolysis & Proteolysis 14 (2000).

    Google Scholar 

  53. Y.A. DeClerck, M.l. Darville, Y. Ecckhout, and G.G. Rosseau, Characterization ofthe promoter ofthe gene encoding human tissue inhibitor of metalloproteinasess-2 (TIMP-2), Gene 139: 185 (1994).

    Article  CAS  Google Scholar 

  54. K. Hammani. A. Blakis, D. Morsette, A.M. Bowcock, C. Schmutte, P. Henriet, and Y.A. DeClerck, Structure and characterization of the human tissue inhibitor of metallo-proteinases-2 gene, J. Biol. Chem. 271: 25498 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. E.W. Howard, E.C. Bullen, and M.J. Banda, Preferential inhibition of 72-and 92 kDa gelatinases by tissue inhibitor of metalloproteinase-2, J. Biol. Chem. 266: 13070 (1991).

    PubMed  CAS  Google Scholar 

  56. R.V. Ward, S.J. Atkinson, P.M. Slocombe, A.J.P. Docherty, J.J. Reynolds, and G. Murphy, Tissue inhibitor of metalloproteinases-2 inhibits activation of 72 kDa progelatinase by fibroblast membranes, Biochem. Biophys. Acta. 1079: 242 (1991).

    PubMed  CAS  Google Scholar 

  57. G.I. Goldberg, B.L. Marmer, G.A. Grant, A.Z. Eisen, S. Whilhelm, and C. He, Human 72 kDatype IV collagenase forms a complex with a tissue inhibitor of metalloproteinases designated TIMP-2, Proc. Natl. Acad Sci. U.S.A. 86: 8207(1989).

    Article  PubMed  CAS  Google Scholar 

  58. R. Fridman, T.R. Fuerst, R.E. Bird, M. Hoyhtya, M. Oelkuct, S. Kraus, D. Komarek, L.A. Liotta, M.L. Berman, and W.G. Stetler-Stevenson, Domain-structure of human 72 kDa gelatinase type IV collagenase characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions, J. Biol. Chem. 267: 15398 (1992).

    PubMed  CAS  Google Scholar 

  59. Y. Itoh and H. Nagase, Preferential inactivation of tissue inhibitor of metalloproteinses-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophilelastase, J. Biol. Chem. 270: 16518 (1995).

    Article  PubMed  CAS  Google Scholar 

  60. N.J. Hicks, R.V. Ward, and J.J. Reynolds, A fibrosarcoma model derived from mouse embryo cells: growth properties and secretion of collagenase and metalloproteinase inhibitor (TIMP) by tumour cell lines, Int. J. Cancer 33: 835 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. A. Ponton, B. Coulombe, and D. Skup, Decreased expression of tissue inhibitor of metalloproteinase in metastatic tumour cells leading to increased levels of collagenase activity, Cancer Res. 51: 2138 (1991).

    PubMed  CAS  Google Scholar 

  62. R.M. Schultz, S. Silberman, B. Persky, A.S. Bajkowski, and D.F. Carmichael, Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells, Cancer Res. 48: 5539 (1988).

    PubMed  CAS  Google Scholar 

  63. Y.A. DeClerck, T.D. Yean, D. Chan, H. Shimada, and K.E. Langley, Inhibition oftumour invasion of smooth muscle cell layers by recombinant human metalloproteinase inhibitor, Cancer Res. 51: 2151 (1991).

    PubMed  CAS  Google Scholar 

  64. A. Albini, A. Melchiori, L. Santi, L.A. Liotta, P.D. Brown, and W.G. Stetler-Stevenson, Tumour cell invasion inhibited by TIMP-2, J. Natl. Cancer lnst. 11: 775 (1991).

    Article  Google Scholar 

  65. R. Khokha, M.J. Zimmer, C.H. Graham, P.K. Lala, and P. Waterhouse, Suppression of invasion by inducible expression oftissue inhibitor of metalloproteinase-1 (TIMP-I) in B16-FI0 melanoma cells, J. Natl. Cancer Inst. 84: 1017 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. R. Khokha, M.J. Zimmer, S.M. Wilson, and A. Chambers, Up-regulation of TIMP-1 expression in B16-FI0 melanoma cells suppresses their metastatic ability in chick embryo, Clin. Exp. Metastasis 10: 365 (1992).

    Article  PubMed  CAS  Google Scholar 

  67. A.M.P. Montgomery, B.M. Mueller, R.A. Reisfeld, S.M. Taylor, and Y.A. DeClerck, Effect of tissue inhibitor of metalloproteinase-2 expression on the growth and spontaneous metastasis of human melanoma cell line, Cancer Res. 54: 5467 (1994).

    PubMed  CAS  Google Scholar 

  68. R. Khokha, P. Waterhouse, S. Yagel, P.K. Lala, C.M. Overall, G. Norton, and D.T. Denhardt, Antisense RNA-induced reduction in murine TIMP levels confers oncogenticity on Swiss 3T3 cells, Science 243: 947 (1989).

    Article  PubMed  CAS  Google Scholar 

  69. Y.A. DeClerck, N. Perez, H. Shimada, T.C. Boone, K.E. Langley, and S.M. Taylor, Inhibition of invasion and metastasis in cells transfected with an inhibitor of metallo-proteinases, Cancer Res. 52: 701 (1992).

    PubMed  CAS  Google Scholar 

  70. A.H. Baker, A.B. Zaltsman, S.J. George, and A.C. Newby, Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation and death in vitro; TIMP-3 promotes apoptosis, J. Clin. Invest. 101: 1478 (1998).

    Article  PubMed  CAS  Google Scholar 

  71. M. Ahonen, A.H. Baker, and V. Kahari, Adenovirus-mediated gene delivery oftissue inhibitor of metalloproteinase-3 inhibits invasion and induces apoptosis in melanoma cells, Cancer Res. 58: 2310 (1998).

    PubMed  CAS  Google Scholar 

  72. M. Wang, Y.E. Liu, J. Greene, S. Sheng, A. Fuchs, E.M. Rosen, and Y.E. Shi, Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4, Oncogene 14: 2767 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. T.H. Vu, J.M. Shipley, G. Bergers, J.E. Berger, J.A. Helms, D. Hanahan, S.D. Shapiro, R.M. Senior, and Z. Werb, MMP-9/Gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes, Cell 93: 411 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. S. Koop, E.E. Schmidt, I.C. MacDonald, V.L. Morris, R. Khokha, M. Grattan, J. Leone, A.F. Chambers, and A.C. Groom, Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravasate equally well, Proc. Natl. Acad. Sci. U.S.A. 93: 11080 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. J.L. Fowlkes, J.J. Enghild, K. Suzuki, and H. Nagase, Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures, J. Biol. Chem. 41: 25742 (1996).

    Google Scholar 

  76. M Sumki, G. Raab, M.A. Moses, C.A. Fernandez, and M. Klagsbrun, Matrix metallo-proteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site, J. Biol. Chem. 272: 31730 (1997).

    Article  Google Scholar 

  77. S. Orlando, M. Sironi, G. Bianchi, A.H. Drummond, D. Boraschi, D. Yabes, and A.. Mantovani, Role of metalloproteinases in the release of the IL-1 type II decoy receptor, J. Biol. Chem. 272: 31764 (1997).

    Article  PubMed  CAS  Google Scholar 

  78. N. Prenzel, E. Zwick, H. Daub, M. Leserer, R. Abraham, C. Wallasch, and A. Ullrich, EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF, Nature 402: 884 (1999).

    PubMed  CAS  Google Scholar 

  79. D.C. Martin, L. L. Fowlkes, B. Babic, and R. Khokha, Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1, J. Cell. Biol. 146: 881 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. A.E. Kossakowska, S. Urbanski, and D.R. Edwards, Tissue inhibitor of metalloproteinases (TIMP) RNA is expressed at elevated levels in malignant non-Hodgkin’s lymphomas, Blood 77: 2475 (1991).

    PubMed  CAS  Google Scholar 

  81. S. Imren, D.B. Kohn, H. Shimada, L. Blavier, and Y.A. DeClerck, Overexpression oftissue inhibitor of metalloproteinases-2 by retroviral-medicated gene transfer in vivo inhibits tumor growth and invasion, Cancer Res. 56: 2891 (1996).

    PubMed  CAS  Google Scholar 

  82. L. Chesler, D.W. Golde, N. Bersch, and M.D. Johnson, Metalloproteinase inhibition and erythroid potentiation are independent activities oftissue inhibitor of metalloproteinases-1, Blood 86: 4506 (1995).

    PubMed  CAS  Google Scholar 

  83. T. Hayakawa, K. Yamashita, K. Tanzawa, E. Uchijima, and K. Iwata, Growth-promoting activity of tissue inhibitor of metalloproteinases (TIMP-I) for a wide range of cells. A possible new growth factor in serum, FEBS Lett. 298: 29 (1992).

    Article  PubMed  CAS  Google Scholar 

  84. J.A. Nemeth, A. Rafe, M. Steiner, and C.L. Goolsby, TIMP-2 growth-stimulatory activity: A concentration and cell type-specific response in the presence of insulin, Exptl. Cell. Res. 224: 110 (1996).

    Article  PubMed  CAS  Google Scholar 

  85. N. Boujrad, SO. Ogwuegbu, M. Gamier, C.H. Lee, B.M. Martin, and V. Papadopoulos, Identification of a stimulator of steroid hormone synthesis isolated from testis, Science 268: 1609 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. T. Hayakawa, K. Yamashita, E. Ohuchi, and A. Shinagawa, Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2, J. Cell. Sci. 107: 2373 (1994).

    PubMed  CAS  Google Scholar 

  87. A.N. Murphy, E.J. Unsworth, and W.G. Stetler-Stevenson, Tissue inhibitor or metallo-proteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation, J. Cell. Physiol. 157: 351 (1993).

    Article  PubMed  CAS  Google Scholar 

  88. C.M. Alexander, E.W. Howard, M.J. Bissell, and Z. Werb, Rescue of mammary epithelial cell apoptosis and entactin degradation by tissue inhibitor of metalloproteinase-transgene, J.Cell. Biol. 135: 1669 (1996).

    Article  PubMed  CAS  Google Scholar 

  89. N. Boudreau, C.J. Sympsonb, Z. Werb, and M. Bissell, Suppression of ICE and apoptosis in mammary epithelial cells by extracellular mstrix, Science 267: 891 (1995).

    Google Scholar 

  90. G.M. McGeehan, J.D. Becherer, R.C. Bast, B. Champion, K.M. Connolly, J.G. Conway, F. Furdon, S. Karp, S. Kidao, and A.B. McElroy, Regulation of tumor necrosis-factor alpha processing of metalloproteinase inhibitor, Nature 370: 558 (1994).

    Article  PubMed  CAS  Google Scholar 

  91. M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato, F. Kimura, K. Motoyoshi, M. Mizuki, S. Tagawa, S. Ohga, K. Hatake, A.H. Drummond, and S. Nagata, Fas ligand in human serum, Nat. Med. 2: 317 (1996).

    Article  PubMed  CAS  Google Scholar 

  92. A.E. Kossakowska, S.J. Urbanski, S.A. Huchcroft, and D.R. Edwards, Relationship between the clinical aggressiveness of large cell immunoblastic lymphomas and expression of 92 kDa gelatinase (TypelV Collagenase) and tissue inhibitor of metalloproteinases-l (TIMP-1) RNAs, Oncol. Res. 4: 233 (1992).

    PubMed  CAS  Google Scholar 

  93. L. Guedez, W.G. Stetler-Stevenson, L. Wolff, J. Wang, P. Fukushima, A. Mansoor, and M. Stetler-Stevenson, In vitro suppression of programmed cell death of B cells by tissue inhibitor of metaIloproteinases-1, J. Clin. Invest. 102: 2002 (1998).

    Article  PubMed  CAS  Google Scholar 

  94. J. Codony-Servat, J. Albanell, J.C. Lopez-Talavera, J. Arribas, and J. Baselga, Cleavage of the HERs ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor if metalloproteinases-1 in breast cancer cells, Cancer Res. 15: 1196 (1999).

    Google Scholar 

  95. P. Valente, G. Fassina, A. Melchiori, L. Masiello, M. Cilli, A. Vacca, M. Onisto, L. Santi, W.G. Stetler-Stevenson, and A. Albina, TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanomacells from apoptosis, Int. J. Cancer 75: 246 (1998).

    Article  PubMed  CAS  Google Scholar 

  96. M.R. Smith, H. Kung, S.K. Durum, N.H. Colburn, and Y. Sun, TIMP-3 induces cell death by stabilizing TNF-a receptors on the surface of human colon carcinoma cells, Cytokine 9: 770 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. P.G. Hargreaves, F. Wang, J. Antcliff, G. Murphy, J. Lawry, R.G. Russell, and P. I. Croucher, Human myeloma cells shed the interleukin-6 receptor:inhibition by tissue inhibitor of metalloproteinase-3 and a hydroxamate-based metalloproteinase inhibitor, Br. J.Haematol. 101: 694 (1998).

    Article  PubMed  CAS  Google Scholar 

  98. J Folkman. Tumor angiogenesis. Adv Cancer Res. 19: 331 (1974).

    Article  PubMed  CAS  Google Scholar 

  99. J. Folkman and Y. Shing, Angiogenesis, J. Biol. Chem. 267: 10931 (1992).

    PubMed  CAS  Google Scholar 

  100. J.W. Fett, D. J. Strydom, R.R. Lobb, E.M. Alderman, J.L. Bethune, J.F. Riordan, and B.L. Vallee, Isolation and characterization of angiogenesis, an angiogenic protein from human carcinoma cells, Biochemistry 24: 5480 (1985).

    Article  PubMed  CAS  Google Scholar 

  101. M.S. O’Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W. S. Lane, T. Cao, E.H. Sage, and J. Folkman, Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by Lewis lung carcinoma, Cell 79: 315 (1994).

    Article  PubMed  CAS  Google Scholar 

  102. D.J. Good, P.J. Polverini, F. Rastinejad, M. M. Le Beau, R. S. Lemons, W.A. Frazier, and N.P. Bouck, A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment ofthrombospondin, Proc. Natl. Acad. Sci. U.S.A. 87: 6624 (1990).

    Article  PubMed  CAS  Google Scholar 

  103. B. Anand-Apte, M.S. Pepper, E. Voest, R. Montesano, B. Olsen, G. Murphy, S. S. Apte, and B. Zetter, Inhibition of angiogenesis by tissue inhibitor of metallo-proteinase-3, Invest. Ophthal. Vis. Sci. 38: 817 (1997).

    PubMed  CAS  Google Scholar 

  104. C. Fisher, S. Gilbertson-Beadling, E.A. Powers, G. Petzold, R. Poorman, and M.A. Mitchel. I Interstitial collagenase is required for angiogenesis in vitro. Developmental Biology, 162: 499–510 (1994).

    Article  PubMed  CAS  Google Scholar 

  105. G. Taraboletti, A. Garofalo, D. Belotti, T. Drudis, P. Borsotti, E. Scanziani, P.D. Brown, and R. Giavazzi, Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinses, J. Natl. Cancer Inst. 87: 293 (1995).

    Article  PubMed  CAS  Google Scholar 

  106. Z. Shi, S. Raithatha, D. Spencer, B. Rewcastle, P. Brasher D. Morris, R. Feeley, J. Brekken, D. Shalinsky, R Johnston, D. Edwards, and P. Forsyth, Enhanced effectiveness of a novel MMP inhibitor, Prinomastat (AG3340) with radiotherapy (RT) in a glioma model, Proc. Amer. Assoc. Cancer Res. 41: 2071 (2000).

    Google Scholar 

  107. G. Murphy and T. Crabbe, Gelatinases A and B, Methods in Enzymology 248: 470 (1995).

    Article  PubMed  CAS  Google Scholar 

  108. G. Murphy, M.I. Cockett, R.V. Ward, and A. J. Docherty, Matrix rnetalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and ?2 and punctuated metalloproteinase (PUMP), Biochem. J. 277: 277 (1991).

    PubMed  CAS  Google Scholar 

  109. L.M. Matrisian, Metalloproteinses and their inhibitors in matrix remodeling, Trends Genet. 6: 121 (1990).

    Article  PubMed  CAS  Google Scholar 

  110. E. Ohuchi, K. lmai, Y. Fujii, H. Sato, M. Seiki, and Y. Okada, Membrane type I matrix metalloproteinse digests interstitial collagens and other extracellular matrix macromolecules, J. Biol. Chem. 272: 2446 (1997).

    Article  PubMed  CAS  Google Scholar 

  111. J.S. Rao, R. Sawaya, Z.L. Gokaslan, W.K.A. Yung, G.W. Goldstein, and J. Laterra, Modulation of serine proteinases and metalloproteinses during morphogenic glial-endothelial interactions, J. Neurochem. 66: 1657 (1996).

    PubMed  CAS  Google Scholar 

  112. P.C. Brooks, A.M. Montgomery, M. Rosenfeld, R.A. Reisfeld, T. Hu, G. Klier, and D.A. Cheresh, Integrin alpha v beta3 antagonists promote tumor regression by inducing apoptosis of angiogneic blood vessels, Cell 79:1157 (1994).

    Article  PubMed  CAS  Google Scholar 

  113. P.C. Brooks, S. Stromblad, L.C. Sanders, T. L. von Schalscha, R.T. Aimes, W. G. Stetler-Stevenson, J.P. Quigley, and D.A. Cheresh, Localization of matrix metallo-proteinse MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3, Cell 85:683 (1996).

    Article  PubMed  CAS  Google Scholar 

  114. P.C. Brooks, S. Silletti, T. L. vonSchalscha, M. Friedlander, and D. Cheresh, Disruption of angiogenesiss by PEX, a noncatalytic metalloproteinse fragment with integrin binding activity, Cell, 92:391 (1998).

    Article  PubMed  CAS  Google Scholar 

  115. T. ltoh, M. Tanioka, H. Yoshida, T. Yoshioka, H. Nishimoto, and S. Itohara, Reduced angiogenesis and tumor progression in gelatinase A-deficient mice, Cancer Res. 58: 1048 (1998).

    Google Scholar 

  116. N. Hiraoka, E. Allen, I. J. Apel,, M. R. Gyetko, and S. J. Weiss, Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins, Cell 95:365 (1998).

    Article  PubMed  CAS  Google Scholar 

  117. Z. Zhou, S.S. Apte, R. Soininen, R. Cao, G.Y. Baaklini, R.W. Rawer, J. Wang, Y. Cao, and K. Tryggvason, lmpaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I, Proc. Natl. Acad Sci. U.S.A. 97:4052 (2000).

    Article  PubMed  CAS  Google Scholar 

  118. J. Fang, Y. Shing, D. Wiederschain, L. Yan, C. Butterfield, G. Jackson, J. Harper, G. Tamvakopoulos, and M.A. Moses, Matrix metalloprotienase-2 is required for the Switch to the angiogenic phenotype in a tumor model, Proc. Natl. Acad. Sci. U.S.A. 97:3884 (2000).

    Article  PubMed  CAS  Google Scholar 

  119. A. Pozzi, P.E. Moberg, L.A. Miles, S. Wagner, P. Soloway, and H.A. Gardner, Elevated matrix metalloprotease and angiostatin levels in integrin a1 knockout mice cause reduced tumor vascularization, Proc. Natl. Acad. Sci. U.S.A. 97:2202 (2000).

    Article  PubMed  CAS  Google Scholar 

  120. W. Wen, M.A. Moses, D. Wiederschain, J.L. Arbiser, and J. Folkman, The generation of endostatin is mediated by elastase, Cancer Res. 59:6052 (1999).

    PubMed  CAS  Google Scholar 

  121. P.D. Brown and R. Giavazzi, Matrix metalloproteinase inhibition: a review of anti-tumor activity, Ann. Oncol. 6:967 (1995).

    PubMed  CAS  Google Scholar 

  122. B. Davies, P.D. Brown, N. East, M.J. Crimmin, and F.R.A. Balkwill, A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts, Cancer Res. 53:2087 (1993).

    PubMed  CAS  Google Scholar 

  123. R.G.S. Chirivi, A. Garofalo, M.J. Crimmin, L.J. Bawden, A. Stoppacciaro, P.D. Brown, and R. Giavazzi, Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor, Int. J. Cancer 58:460 (1994).

    Article  PubMed  CAS  Google Scholar 

  124. S.A. Eccles, G.M. Box, W.J. Court, E.A. Bone, W. Thomas, and P.D. Brown, Control of lymphaticand hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94), Cancer Res. 56:2815 (1996).

    PubMed  CAS  Google Scholar 

  125. S.A. Watson, T.M. Morris, G. Robinson, M.J. Crimmin, P.D. Brown, and J.D. Hardcastle, Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models, Cancer Res. 55:3629 (1995).

    PubMed  CAS  Google Scholar 

  126. X. Wang, X. Fu, P.D. Brown, M.J. Crimmin, and R.M. Hoffman, Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibitors human colon tumor growth and spread in a patient-like orthotopic model in nude mice, Cancer Res. 54:4726 (1994).

    PubMed  CAS  Google Scholar 

  127. J.A. Low, M.D. Johnson, E.A. Bone, and R.B. Dickson, The matrix metalloproteinse inhibitor batimastat (BB94) retards human breast cancer solid tumor growth but not as cites formation in nude mice, Clin. Cancer Res. 2:1207 (1996).

    PubMed  CAS  Google Scholar 

  128. J.G. Conway, S.J. Trexler, J.A. Wakefield, B.E. Marron, D.L. Emerson, D.M. Bickett, D.N. Deaton, D. Garrison, M. Elder, A. McElroy, N. Wilmott, A.J.P. Docherty, and G.M. McGeehan, Effect of matrix metalloproteinase inhibitors on tumor growth and spontaneous metastasis, Clin. Exp. Metastasis 14:115 (1996).

    Article  PubMed  CAS  Google Scholar 

  129. I.C. Anderson, M.A. Shipp, A.J.P. Docherty, and B.A. Teicher, Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma, Cancer Res. 56:715 (1996).

    CAS  Google Scholar 

  130. D.R. Shalinsky, J. Brekken, H. Zou, C.D. McDermott, P. Forsyth, D. Edwards, S. Margosiak, S. Kolis, G. Truitt, A. Wood, N.M. Varki, and K. Appelt, Broad antitumor and antiangiogenic activities of AG3340, a novel metalloproteinase inhibitor, in preclinical tumor models, Ann. N Y. Acad. Sci. 878:236 (1999).

    Article  PubMed  CAS  Google Scholar 

  131. P.A. Forsyth, T. Dickinson-Laing, A.W. Gibson, N.B. Rewcastle, P. Brasher, G. Sutherland, R.N. Johnston, and D.R. Edwards, High levels of Gelatinase-B and active Gelatinase-A in metastatic glioblastoma. J. Neurooncol. 36:21 (1998).

    Article  PubMed  CAS  Google Scholar 

  132. P.A. Forsyth, H. Wong, T. DickinsonLaing, N.B. Rewcastle, D.G. Morris, H.M. Muzik, K.J. Leco, R.N. Johnston, P.M. Brasher, G.R. Sutherland, and D.R. Edwards, Gelatinase-A (MMP-2), Gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-l (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas, Br. J. Cancer 79:1828 (1999).

    Article  PubMed  CAS  Google Scholar 

  133. J.S. Rao, P.A. Steck, S. Mohanam, W.G. Stetler-Stevenson, L.A. Liotta, and R. Sawaya, Elevated levels of Mr 92,000 type IV collagenase in human brain tumors, Cancer Res. 53:2208 (1993).

    PubMed  CAS  Google Scholar 

  134. J.S. Rao, M. Yamamoto, S. Mohaman, Z.L. Gokaslan, W.G. Stetler-Stevenson, V.H. Rao, G.N. Fuller, L.A. Liotta, G.L. Nicolson, and R.E. Sawaya, Expression and localization of 92 kDatype IV collagenase/gelatinase B (MMP-9) in human gliomas, Clin. Exp. Metastasis 14:12 (1996).

    Article  PubMed  CAS  Google Scholar 

  135. T. Nakagawa, T. Kubota, M. Kabuto, K. Sato, H. Kawano, T. Hayakawa, and Y. Okada, Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors, J. Neurosurg. 81:69 (1994).

    PubMed  CAS  Google Scholar 

  136. A. Price, Q. Shi, D. Morris, M.E. Wilcox, P.M.A. Brasher, N.B. Rewcastle, D. Shalinsky, K. Appelt, H. Zou, R.N. Johnston, V.W. Yong, D.R. Edwards, and P.A. Forsyth, Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340, Clin. Cancer Res. 5:645 (1999).

    Google Scholar 

  137. G. Apodaca, J.T. Rutka, K. Bouhana, M.E. Berens, J.R. Giblin, M.L. Rosenblum, J.H. McKerrow, and M.J. Banda, Expression of metalloproteinase and metalloproteinase inhibitors by fetal astrocytes and glioma cells, Cancer Res. 50:2322 (1990).

    PubMed  CAS  Google Scholar 

  138. P.C. Costello, R.F. Del Maestro, and W.G. Stetler-Stevenson, Gelatinase A expression in human malignant gliomas, Ann. N Y. Acad. Sci. 732:450 (1994).

    Article  PubMed  CAS  Google Scholar 

  139. A. Nakano, E. Tani,, K. Miyazaki, Y. Yamamoto, and J. Furuyama, Matrix metallo-proteinases and tissue inhibitors of metalloproteinases in human gliomas, J. Neurosurg. 83:298 (1995).

    PubMed  CAS  Google Scholar 

  140. J.T. Rutka, K. Matsuzawa, and S.L. Hubbard, Expression of TIMP-1, TIMP-2,72-and 92-kDa type IV collagenase transcripts in human astrocytoma cell lines: correlation with astrocytoma cell invasiveness, Int. J. Oncol. 6:877 (1995).

    CAS  Google Scholar 

  141. A. Nakano, E. Tani, K. Miyazaki, J. Furuyama, and T. Matsumoto, Expressions of matrilysin and stromelysin in human glioma cells, Biochem. Biophys. Res. Comm. 192:999 (1993).

    Article  PubMed  CAS  Google Scholar 

  142. T. Nakagawa, T. Kubota, M. Kabuto, N. Fujimoto, and Y. Okada, Secretion of matrix metalloproteinases-2 (72 kD gelatinase/type IV collagenase = gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix, J. Neurooncol. 28:13 (1996).

    Article  PubMed  CAS  Google Scholar 

  143. A. Saxena, J.T. Robertson, and C. Kufta, Increased expression ofgelatinase A and TIMP-2 in primary human glioblastomas, Int. J. Oncol. 7: 469 (1995).

    CAS  Google Scholar 

  144. M. Yamamoto, S. Mohanam, R. Sawaya, G.N. Fuller, M. Seiki, H. Sato, Z.L. Gokaslan, L.A. Liotta, G.L. Nicolson, and J.S. Rao, Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase-A activation in human malignant brain tumors in vivo and in vitro, Cancer Res. 56:384 (1996).

    PubMed  CAS  Google Scholar 

  145. R. Sawaya, M. Yamamoto, Z.L. Gokaslan, S.W. Wang, S. Mohanam, G.N. Fuller, LE. McCutcheon, W.G. Stetler-Stevenson, G.L. Nicolson, and J.S. Rao, Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo, Clin. Exp. Metastasis, 14: 35 (1996).

    Article  PubMed  CAS  Google Scholar 

  146. S.A. Raithatha, H. Muzik, N.B. Rewcastle, R.N. Johnston, D.R. Edwards, and P.A. Forsyth, Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas, Neuro-Oncol. (2000)

    Google Scholar 

  147. S. Mohanam, S.K. Chintala, P.M. Mohan, R. Sawaya, G.K. Lagos, Z.L. Gokaslan, G.P. Kouraklis, and J.S. Rao, Increased invasion of neuroglioma cells transfected with urokinase plasminogen activator receptor cDNA, Int. J. Oncol. 13:1285 (1998).

    PubMed  CAS  Google Scholar 

  148. K. Matsuzawa, K. Fukuyama, S.L. Hubbard, P.B. Dirks, and J.T. Rutka, Transfection of an invasive human astrocytoma cell line with a TIMP-I cDNA: Modulation of astrocytoma invasive potential, J. Neuropath. Exp.Neurol. 55:88 (1996).

    Article  PubMed  CAS  Google Scholar 

  149. L.L Groft, H. Muzik, H. Wong, N.B. Rewcastle, R. Johnston, D.R. Edwards, and P.A Forsyth, Tissue inhibitor of metalloproteinase expression in human malignant gliomas, Proceed. Cancer Res. 39:237 (1998).

    Google Scholar 

  150. K. Lampert, U. Machein, M.R. Machein, W. Conca, H.H. Peter, and B. Volk, Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors, Am. J. Pathol. 153: 429 (1998).

    PubMed  CAS  Google Scholar 

  151. M. Nakada, H. Nakamura, E. Ikedo, N. Fujimoto, J. Yamashita, H. Sato, M. Seiki, and Y. Okada, Expression and localization of membrane type 1,2, and 3 matrix metallo-proteinases in human astrocytic tumors, Am. J. Pathol. 154:417 (1999).

    PubMed  CAS  Google Scholar 

  152. E. Llano, A.M. Pendas, J.P. Freije, A. Nakano, V. Knauper, G. Murphy, and C. Lopez-Otin, Identification and characterization of human MTS-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors, Cancer Res. 59:2570 (1999).

    PubMed  CAS  Google Scholar 

  153. G. Velasco, S. Cal, A. Merlos-Suarez, A.A. Ferrando, S. Alvarez, A. Nakano, J. Arribas, and C. Lopez-Otin, Human MT6-matrix metalloproteinase: Identification, progelatinase A activation, and expression in brain tumors, Cancer Res. 60: 877 (2000).

    PubMed  CAS  Google Scholar 

  154. G. Apodaca, J.T. Rutka, K. Bouhana, M.E. Berens, J.R. Giblin, M.L. Rosenblum, J.H. McKerrow, and M.J. Banda, Expression of metalloproteinase and metalloproteinase inhibitors by fetal astrocytes and glioma cells, Cancer Res. 50:2322 (1990).

    PubMed  CAS  Google Scholar 

  155. T. Abe, T. Mori, K. Kohno, M. Seiki, T. Hayakawa, H.G. Welgus, S. Hori, and M. Kuwano, Expression of 72kDa type IV collagenase and invasion activity of human glioma cells, Clin. Exp. Metastasis 12:296 (1994).

    Article  PubMed  CAS  Google Scholar 

  156. R.F. DelMaestro, I.S. Vaithilingam, and W. MacDonald, Degradation of collagen type IV by C6 astrocytoma vells, J Neurooncol. 24:75 (1995)

    Article  CAS  Google Scholar 

  157. A.T. Belien, P.A. Paganetti, and M.E. Schwab, Membrane-type 1 matrix metalloprotease (MTI-MMP) enables invasive migration of glioma cells in central nervous system white matter, J. Cell. Biol. 144:373 (1999).

    Article  PubMed  CAS  Google Scholar 

  158. M. Whittaker, C.D. Floyd, P. Brown, and A.J.H. Gearing, Design 4 therapeutic application of matrix-metalloproteinase inhibitors, Chem. Rev. 99:2735 (1999).

    Article  PubMed  CAS  Google Scholar 

  159. J.H. Uhm, C.L. Gladson, and J.S. Rao, The role of integrins in the malignant phenotype of gliomas, Front. Biosci. 4:188 (1999).

    Article  Google Scholar 

  160. S. Stromblad, J.C. Becker, M. Yebra, P.C. Brooks, and D.A. Cheresh, Suppression of p53 activity and p21 WAF/CIP1 expression by vascular cell integrin alpha v beta3 during angiogenesis, J. Clin. Invest. 98:426 (1996).

    Article  PubMed  CAS  Google Scholar 

  161. J.H. Uhm, N.P. Dooley, A.P. Kyritsis, J.S. Rao, and C. Gladson, Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death, Clin. Cancer Res. 5:1587 (1999).

    PubMed  CAS  Google Scholar 

  162. C. Kost, W. Stuber, H.J. Ehrlichy, H. Pannekoek, and K.T. Preissner, Mapping of binding sites for heparin, plasminogen activator inhibitor-I, and plasminogen to vitronectin’s heparin-binding region reveals a novel vitronectin-dependent feedback mechanism for the control of plasmin formation, J. Biol. Chem. 267:12098 (1992).

    PubMed  CAS  Google Scholar 

  163. M. Yamamoto, R. Sawaya, S. Mohanam, D.J. Loskutokk, J.M. Bruner, V.H. Rao, K. Oka, M. Tomonaga, G.L. Nicolson, and J.S. Rao, Expression and cellular localization of meddenger RNA for plasminogen activaroe inhibitor type 1 in human astrocytomas in vivo. Cancer Res. 54:3329 (1994).

    PubMed  CAS  Google Scholar 

  164. K. Bajou, A. Noel, R.D. Gerard, V. Masson, N. Brunner, C. Holst-Hansen, M. Skobe, N.E. Fusenig, P. Carmeliet, D. Collen, and J.M. Foidart, Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization, Nat. Med. 4:923 (1998).

    Article  PubMed  CAS  Google Scholar 

  165. S. Mohanam, W.W. Wang, A. Rayford, M. Yanamoto, R. Sawaya, M. Nakajima, L.A. Liotta, G.L. Nicholson, W.G. Stetler-Stevenson, and J.S. Rao, Expression of tissue inhibitors of metalloproteinases: negative regulators of human glioblastoma invasion in vivo, Clin. Exp. Metastasis 13:57 (1995).

    Article  PubMed  CAS  Google Scholar 

  166. K. Matsuzawa, K. Fukuyama, S.L. Hubbard, P.B. Dirks, and J.T. Rutka, Tansfection of anti invasive human astrocytoma cell line with a TIMP-1 cDNA: Modulation of astrocytoma invasive potential, J. Neuropath. Exp. Neurol. 55:88 (1996).

    Article  PubMed  CAS  Google Scholar 

  167. H. Yoshiji, S.R. Harris, E. Raso, D.E. Gomez, C.K. Lindsay, M. Shibuya, C.C. Sinha, and U.P Thorgeirsson, Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression, Int. J. Cancer 75:81 (1998).

    Article  PubMed  CAS  Google Scholar 

  168. M. Wang, Y.E. Liu, J. Greene, S. Sheng, A. Fuchs, E.M. Rosen, and Y.E. Shi, Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4, Oncogene 14:2767 (1997).

    Article  PubMed  CAS  Google Scholar 

  169. H.F. Bigg, Y.E. Shi, Y.E. Liu, B. Steffensen, and C.M. Overall, Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2, J. Biol. Chem. 272:15496 (1997).

    Article  PubMed  CAS  Google Scholar 

  170. J-C. Tonn, S. Kerkau, A. Hanke, H. Bouterfa, J.G. Meuller, S. Wagner, G.H. Vince, and K. Roosen, Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro, Int. J. Cancer 80:764 (1999).

    Article  PubMed  CAS  Google Scholar 

  171. M.S. O’Reilly, D. Wiederschain, W.G. Stetler-Stevenson, J. Folkman, and M.A. Moses, Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance, J. Biol. Chem. 274:29568 (1999).

    Article  PubMed  CAS  Google Scholar 

  172. E.L. Lund, L. Bastholm, and P.E.G. Krtistjansen, Therapeutic synergy of TNP-470 and ionizing radiation: Effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts, Clin. Cancer Res. 6:971 (2000).

    PubMed  CAS  Google Scholar 

  173. U. Reuning, V. Magdolen, 0. Wilhelm, K. Fischer, V. Lutz, H. Graedd, and M. Schmitt, Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (review), Int. J. Oncol. 13:893 (1998).

    PubMed  CAS  Google Scholar 

  174. C.F.M. Sier, H.J.M. Vloedgracen, S. Ganesh, P.H.A. Griffioen, J.H. Quax, G. Verheijen, G. Dooijewaard, K. Weivaart, C.J.H. van de Velde, and C.B.H.W. Lamers, Interactive urokinase and increased levels of its inhibitor type 1 in colorectal cancer liver metastasis, Gastroenterology 107:1449 (1994).

    PubMed  CAS  Google Scholar 

  175. M.V. Cubellis, T.C. Wun, and F. Blasi, Receptor-mediated internalization and degradation for urokinase is caused by its specific inhibitor PAI-1, EMBO J. 9:1079 (1990).

    PubMed  CAS  Google Scholar 

  176. A. Estreicher, J. Muhlhauser, J.L. Carpentier, L. Orci, and J.D. Vassalli, The receptor for urokinase-type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes, J. Cell. Biol. 111:783 (1990).

    Article  PubMed  CAS  Google Scholar 

  177. L. Goretzki, M. Schmitt, K. Mann, J. Calvette, N. Cjucholowski, M. Kramer, W.A. Günzler, F. Jiinicke, and H. Graeff, Effective activation of the proenzyme form of urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L, FEBS Lett. 297:112 (1992).

    Article  PubMed  CAS  Google Scholar 

  178. A. Ichinose, K. Fijikama, and T. Suyama, The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin, J. Biol. Chem. 261:3486 (1986).

    PubMed  CAS  Google Scholar 

  179. H. Kobayashi, M. Schmitt, L. Goretzki, N. Cucholowski, J. Calvete, M. Kramer, A.W. Günzler, F. Jänicke, and H. Graeff, Cathepsin B efficiently activates the soluble and the tumor cell receptor bound form of the proenzyme urokinase-type plasminogen activator (Pro-u-PA), J. Biol. 266:5147 (1991).

    CAS  Google Scholar 

  180. B. Wolf, J. Vasudevan, J. Henkin, and S. Gonias, Nerve root factor-gactivates soluble and receptor-bound single chain urokinase-type plasminogen activator, J. Biol. Chem. 268:16327 (1993).

    PubMed  CAS  Google Scholar 

  181. M. Plough, N. Behrendt, D. Lober, and K. Dana, Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator, Semin. Thromb. Hemost. 17: 183 (1991).

    Google Scholar 

  182. G. Deng, D.A. Waltz, R. Navaneetha, R.J. Drummond, S. Rosenberg and H.A. Chapman, Identification of the urokinase receptor as an adhesion receptor for vitronectin, J. Biol. Chem. 269:32380 (1994).

    Google Scholar 

  183. D.A. Lauffenburger, Making connections count, Nature 383:390 (1996).

    Article  PubMed  CAS  Google Scholar 

  184. S. Steffansson and D.A. Lawrence, The serpin PAI-1 inhibits cells migration by blocking integrin alpha(v) beta(3) binding to vitronectin, Nature 383:441 (1996).

    Article  Google Scholar 

  185. Y. Wei, M. Lukashev, D.I. Simon, S.C. Bodary, S. Rosenberg, M.V. Doyle, and H.A. Chapman, Regulation of integrin function by the urokinase receptor, Science 273:1551 (1996).

    Article  PubMed  CAS  Google Scholar 

  186. I. Dumler, T. Petri, and W.D. Schleuning, Induction of c-fos in human ovarian cancer cells, FEBS Lett. 343:103 (1994).

    Article  PubMed  CAS  Google Scholar 

  187. R. Sawaya, O.J. Ramo, M.L. Shi, and G. Mandybur, Biological significance of tissue plasminogen activator content in brain tumors, J. Neurosurg. 74:480 (1991).

    PubMed  CAS  Google Scholar 

  188. A.J. Franks and E. Ellis, Immunohistochemical localisation of tissue plasminogen activator in human brain tumors, Br. J. Cancer 59:462 (1989).

    PubMed  CAS  Google Scholar 

  189. K. Bykowska, D.C. Rijken, and D. Collen, Purification and characterization of the plasminogen activator secreted by a rat brain tumor cell line in culture, Thromb. Haemost. 46:642 (1981).

    PubMed  CAS  Google Scholar 

  190. M. Sandstrom, M. Johansson, J. Sandstrom, A.T. Bergenheim, and R. Henriksson, Expression of the proteolytic factors, tPA and uPA, PAI-1 and VEGF during malignant glioma progression, Int. J. Devl. Neurosci. 17:473 (1999).

    Google Scholar 

  191. R.G. Sitrin, M.R. Gyetko, K.L. Kole, P. McKeever, and J. Varani, Expression of heterogeneous profiles of plasminogen activators and plasminogen activator inhibitors by human glioma lines, Cancer Res. 50:4957 (1990).

    PubMed  CAS  Google Scholar 

  192. T.J. MacDonald, Y.A. DeClerck, and W. Laug, Urokinase induces receptor mediated brain tumor cell migration and invasion, J. Neuro-oncol. 40:215 (1998).

    Article  CAS  Google Scholar 

  193. J.L. Gross, D.L. Behrens, D.E. Mullins, P.L. Kornblith, and D.L. Dexter, Plasminogen activator and inhibitor activity in human glioma cells and modulation by sodium butyrate, Cancer Res. 48:291 (1988).

    PubMed  CAS  Google Scholar 

  194. A. Rehemtulla, P. Murphy, M. Dobson, and D.A. Hart, Purification and partial characterization of a plasminogen activator inhibitor from the human glioblastoma, U138, Biochem. Cell Biol. 66:1270 (1988).

    Article  PubMed  CAS  Google Scholar 

  195. W. Tucker, W. M. Kirsch, A. Martinez-Hernandez, and L.M. Fink, In vitro plasminogen activator activity in human brain tumors, Cancer Res. 38:297 (1978).

    PubMed  CAS  Google Scholar 

  196. P.M. Mohan, S.K. Chintala, S. Mohanam, C.L. Gladson, E.S. Kim, Z.L. Gokaslan, S.S. Lakka, J. A. Roth, B. Fang, R. Sawaya, A.P. Kyritsis, and J.S. Rao, Adenovirus-mediated delivery ofantisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth, Cancer Res. 59:3369 (1999).

    PubMed  CAS  Google Scholar 

  197. A. Stahl and B.M. Mueller, Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro, Cancer Res. 54:3066 (1994).

    PubMed  CAS  Google Scholar 

  198. M. Del Rosso, G. Fibbi, G. Dini, C. Grappone, M. Pucci, R. Caldini, L. Magnelli, M. Fimiani, T. Lotti, and E. Panconesi, Role of specific membrane receptors in urokinase-dependent migration of human keratinocytes, J. Invest. Dermatol. 94:310 (1990).

    Article  PubMed  Google Scholar 

  199. S. Kono, J.S. Rao, J.M. Bruner, and R. Sawaya, Immunohistochemical localization of plasminogen activator inhibitor Type 1 in human brain tumors, J. Neuropathol. 53:256 (1994).

    Article  CAS  Google Scholar 

  200. R. Sawaya, M. Yamamoto, 0. J. Rämö, M.L. Shi, A. Rayford, and J.S. Rao, Plasminogen activator inhibitor-I in brain tumors: Relation to malignancy and necrosis, Neurosurgery 36:375 (1995).

    Article  PubMed  CAS  Google Scholar 

  201. J. Kos and T.T. Lah, Cysteine proteinasess and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (Review), Oncol. Rep. 5: 1349 (1998).

    PubMed  CAS  Google Scholar 

  202. P. Montcourrier, P.H. Mangeat, G. Salazar, M. Morisset, A. Sahuquet, and H. Rochefort, Cathepsin D in breast cancer cells can digest extracellular matrix in large acidic vesicles, Cancer Res. 50:6045 (1990).

    PubMed  CAS  Google Scholar 

  203. B.F. Sloane, Suicidal tumor proteases, Nat. Biotechnol. 14:826 (1996).

    Article  PubMed  CAS  Google Scholar 

  204. J.E. Koblinski and B.F. Sloane, Is altered localization of cathepsin B causally related to malignant pregression? In: Medical Aspects of proteases and Protease Inhibitors, N. Katunuma, ed., IOS Press, Amsterdam (1997).

    Google Scholar 

  205. G.F. McIntyre and A.H. Erickson, The lysosomal proenzymge receptor that binds procathepsin L to microsomal membranes at pH5 is a 43-kDa integral membrane protein. Proc. Natl. Acad Sci. U.S.A. 90:10588 (1993).

    Article  PubMed  CAS  Google Scholar 

  206. S. Rijnboutt, A.J. Kal, H.J. Gueze, H. Aerts, and G.J. Strous, Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells, J. Biol. Chem. 266:23586 (1991).

    PubMed  CAS  Google Scholar 

  207. F. Capony, T. Braulke, C. Rougeot, S. Roux, P. Montcourrier, and H. Rochefort, Specific mannose-6 phosphate receptor-independent sorting of pro-cathepsin D in breast cancer cells, Exp. Cell. Res. 215:154 (1994).

    Article  PubMed  CAS  Google Scholar 

  208. W.P. Ren, R. Fridman, J.R. Zabrecky, L.D. Morris, N.A. Day, and B.F. Sloane, Expression of functional recombinant human procathepsin B in mammalian cells, Biochem. J. 319:793 (1996).

    PubMed  CAS  Google Scholar 

  209. K.V. Honn, J. Timar, J. Rozhin, R. Bazaz, M. Sameni, G. Ziegler, and B.F. Sloane, A lipoxygenase metabolite, I2-(S)-HETE stimulates protein kinase C-mediated release of cathepsin B from malignant cells, Exp. Cell. Res. 214:120 (1994).

    Article  PubMed  CAS  Google Scholar 

  210. B. Ulbricht, W. Hagmann, W. Ebert, and E. Spiess, Differential secretion of cathepsins B and L from normal and tumor human lung cells stimulated by 12(S)-hydroxy-eicosatertraenoic acid, Exp. Cell. Res. 226:255 (1996).

    Article  PubMed  CAS  Google Scholar 

  211. R.A. Maciewicz., R.J. Wardale, D.J. Etherington, and C. Paraskeva, Immunodetection of cathepsins B and L present and secreted from human pre-malignant and malignant colorectal tumor cell lines, Int. J. Cancer 43:478 (1989).

    Article  PubMed  CAS  Google Scholar 

  212. I.M. Berquin and B.F. Sloane, Cysteine proteases and tumor progression, Perspect. Drug Disc. Design, 2:371 (1994).

    Article  Google Scholar 

  213. S.A. Rempel, M.L. Rosenblum, T. Mikkelsen, P.S. Yan, K.D. Ellis, W.A. Golembieski M. Sameni, J. Rozhin, G. Ziegler, and B.F. Sloane, Cathepsin B and localization in glioma progression and invasion, Cancer Res. 54:6027 (1994).

    PubMed  CAS  Google Scholar 

  214. M. Sivaparvathi, R. Sawaya, S.W. Wang, A. Rayford, M. Yamamoto, L.A. Liotta, G.L. Nicolson, and J.S. Rao, Overexpression and localization of cathepsin B during the progression of human gliomas, Clin. Exp. Metastasis, 13:49 (1995).

    Article  PubMed  CAS  Google Scholar 

  215. M. Sivaparvathi, I. McCutcheon, R. Sawaya, G.L. Nicolson, and J.S. Rao, Expression ofcysteine protease inhibitors in human gliomas and meningiomasa, Clin. Exp. Metastasis 14:344 (1996).

    Article  PubMed  CAS  Google Scholar 

  216. D. McCormick, Secretion of cathepsin B by human gliomas in vitro, Neuropath. Appl Neurobiol.. 19:146 (1993).

    Article  CAS  Google Scholar 

  217. L.L. Demchik, M. Sameni, K. Nelson, T. Mikkelsen, and B.F. Sloane, Cathepsin Band glioma invasion, Int. J. Devl. Neurosci. 17:483 (1999).

    Article  CAS  Google Scholar 

  218. T. Strojnik, J. Kos, B. Zidanik, R. Golouh, and T. Lah, Cathepsin B immuno-histochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors, Clinical Cancer Res. 5:559 (1999).

    CAS  Google Scholar 

  219. M. Sivaparvathi, R. Sawaya, S.K. Chintala, Y. Go, Z.L. Gokaslan, and J.S. Rao, Expression ofcathepsin D during the progression of human gliomas, Neurosci Lett. 208:171 (1996).

    Article  PubMed  CAS  Google Scholar 

  220. M. Sivaparvathi, M. Yamamoto, G.L. Nicolson, Z.L. Gokaslan, G.N. Fuller, L.A. Liotta, R. Sawaya, and J.S. Rao, Expression and immunohistochemical localization of cathepsin L during the progression of human gliomas, Clin. Ex.p Metastasis, 14:27 (1996).

    Article  CAS  Google Scholar 

  221. M. Sivaparvathi, R. Sawaya, Z.L. Gokaslan, S.K. Chintala, and J.S. Rao, Expression and role of cathepsin H in human glioma progression and invasion, Cancer Lett. 104:121 (1996).

    Article  PubMed  CAS  Google Scholar 

  222. G. Kostoulas, A. Lang, H. Nagase, and A. Baici, Stimulation of angiogenesis through cathepsin B inactivation of the tissue of inhibitors of matrix metalloproteinases, FEBS Lett. 455:286 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Forsyth, P.A., Edwards, D.R., LaFleur, M.A., Yong, V.W. (2002). Proteases and Their Inhibitors in Gliomas. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics