Skip to main content
  • 122 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Guroff, A neutral, calcium-activated proteinase from the soluble fraction of rat brain, J. Biol. Chem. 239: 149–155 (1964).

    PubMed  CAS  Google Scholar 

  2. W.R. Dayton, D.E. Goll, M.G. Zeece, R.M. Robson, and W.J. Reville, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle, Biochemistry 15: 2159–2167 (1976).

    PubMed  CAS  Google Scholar 

  3. W.R. Dayton, W.J. Reville, D.E. Goll, and M.H. Stromer, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme, Biochemistry 15:2150–2158 (1976).

    PubMed  CAS  Google Scholar 

  4. D.E. Goll, W.C. Kleese, A. Okitani, T. Kumamoto, J. Cong, and H-P. Kapprell, Historical background and current status of the Ca2+-dependent proteinase system, in: “Intracellular Calcium-Dependent Proteolysis”, R.L. Mellgren and T. Murachi, ed., CRC Press, Inc., Boca Raton, FL. pp. 3–24 (1990).

    Google Scholar 

  5. T. Murachi, Calpain and calpastatin, Trends Biomed. Sci. 8:167–169 (1983).

    CAS  Google Scholar 

  6. T. Murachi, Intracellular Ca2+ protease and its inhibitor protein: calpain and calpastatin, in: “Calcium and Cell Function, Vol. IV”, W.Y. Cheung, ed., Academic Press, Inc. New York, NY. pp. 377–410 (1983).

    Google Scholar 

  7. A. Okitani, D.E. Goll, M.H. Stromer, and R.M. Robson, Intracellular inhibitor of a Ca2+ activated protease involved in myofibrillar protein turnover. Fed. Proc. 35:1746 (1976).

    Google Scholar 

  8. D. E. Goll, V.F. Thompson, R. G. Taylor, A. Ouali, and R-G.R. Chou, The calpain system in muscle tissue, in: “Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease”, K. K. W. Wang and P.-W. Yuen, ed., Taylor & Francis, Philadelphia, PA. pp. 127–178 (1999).

    Google Scholar 

  9. K.K.W. Wang and P-w. Yuen, Development and therapeutic potential of calpain inhibitors, Adv. Pharmacol. 37:117–152 (1997).

    PubMed  CAS  Google Scholar 

  10. R.L. Mellgren, Evidence for participation of a calpain-like cysteine protease in cell cycle progression through late G1 phase, Biochem. Biophys. Res. Comm. 236:555–558 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. A.S. Harris, D. Croall, and J.S. Morrow, The calmodulin-binding site in a-fodrin is near the the calcium-dependent protease-I cleavage site, J. Biol. Chem. 263:15,554–15761 (1988).

    Google Scholar 

  12. P.R. Stabach, C.D. Cianci, S.B. Glantz, Z. Zhang, and J.S. Morrow, Site-directed mutagenesis of aII spectrin at codon 1175 modulates its μ-calpain susceptibility, Biochemistry 36:57–65 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. J.M. Robets-Lewis, M.J. Savage, V.R. Marcy, L.R. Pinster, and R. Siman, Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain, J. Neurosci. 14:3934–3944 (1994).

    Google Scholar 

  14. T.C. Saido, Y. Yokota, S. Nagao, I. Yamaura, E. Tani, T. Tsuchiya, K. Suzuki, and S. Kawashima, Spatial resolution of fodrin proteolysis in postischemic brain, J. Biol. Chem. 268: 25239–25243 (1993).

    PubMed  CAS  Google Scholar 

  15. K.K.W. Wang, P-w. Yuen, and K.S. Lee, Calpain in excitotoxicity, cerebral ischemia, and neuronal apoptosis, in: “Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease”, K.K.W. Wang, and P-w. Yuen, ed., Taylor & Francis, Philadelphia, PA. pp. 179–190 (1999).

    Google Scholar 

  16. N.L. Banik, D.C. Shields, S.K. Ray, and E.L. Hogan, The pathophysiological role of calpain in spinal cord injury, in: “Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease”, K.K.W. Wang and P-w. Yuen, ed., Taylor & Francis, Philadelphia, PA. pp.211–227 (1999).

    Google Scholar 

  17. R.L. Hayes, A. Kampfl, and R.M. Posmantur, The contribution of calpain proteolysis to neuronal death following traumatic brain injury, in: “Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease”, K.K.W. Wang and P-w. Yuen, ed., Taylor & Francis, Philadelphia, PA. pp. 191–209 (1999).

    Google Scholar 

  18. R.A. Nixon and P.S. Mohan, Calpains in the pathogenesis of Alzheimer’s disease, in: “Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease”, K.K.W. Wang and P-w. Yuen, ed., Taylor & Francis, Philadelphia, PA. pp. 267–291 (1999).

    Google Scholar 

  19. K.K.W. Wang and P-w. Yuen, ed, Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, Taylor & Francis, Philadelphia, PA. (1999).

    Google Scholar 

  20. G.V.W. Johnson and R.P. Guttmann, Calpains: intact and active? BioEssays 19: 1011–1018 (1997).

    PubMed  CAS  Google Scholar 

  21. J.S. Elce, ed., Methods in Molecular Biology, Vol.144: Calpain Methods and Protocols, Humana Press, Inc., Totowa, NJ (2000).

    Google Scholar 

  22. H. Sorimachi, T.C. Saido, and K. Suzuki, New era of calpain research. Discovery of tissue-specific calpains, FEBS Lett. 343:1–5 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. H. Sorimachi, S. Imajoh-Ohmi, Y. Emori, H. Kawasaki, S. Ohno, Y. Minami, and K. Suzuki, Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m-and μ-types. Specific expression of the m-RNA in skeletal muscle, J. Biol. Chem. 264:20106–20111 (1989).

    PubMed  CAS  Google Scholar 

  24. I. Richard, O. Broux, V. Allamand, F. Fougerousse, N. Chiannilkulchai, N. Bourg, L. Brenguier, C. Devaud, P. Pasturaud, C. Roudaut, D. Hillaire, M. Passos-Bueno, M. Zatz, J.A. Tischfield, M. Ferdeau, C.E. Jackson, D. Cohen, and J.S. Beckmann, Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A, Cell 81:27–40 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. T.R. Shannon, K.S. Ginsburg, and D.M. Bers, Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependentcytosolic calcium decline in voltage-clampedcardiac ventricularmyocytes, Biophys. J. 78:322–333 (2000).

    PubMed  CAS  Google Scholar 

  26. N. Kurebayashi, A.B. Harkins, and S.M. Baylor, Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers, Biophys. J. 64:1934–1960 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. P.R. Turner, P. Fong, W.F. Denetclaw, and R.A. Steinhardt, Increased calcium influx in dystrophic muscle, J. Cell Biol. 115:1701–1712 (1991).

    PubMed  CAS  Google Scholar 

  28. P.R. Turner, T. Westwood, C.M. Regen, and R.A. Steinhardt, Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice, Nature 335:735–738 (1988).

    PubMed  CAS  Google Scholar 

  29. W.R. Dayton, comparison of low-and high-calcium-requiring forms of the calcium activated protease with their autocatalytic breakdown products, Biochim. Biophys. Acta 709:166–172 (1982).

    PubMed  CAS  Google Scholar 

  30. T.C. Saido, K. Mizuno, and K. Suzuki, Proteolysis of protein kinase C by calpain: effect of acidic phospholipids, Biomed. Biochim. Acta 50:485–487 (1991).

    PubMed  CAS  Google Scholar 

  31. T.C. Saido, M. Shibata, T. Takenawa, H. Murofushi, and K. Suzuki, Positive regulation of μ-calpain action by polyphosphoinositides, J. Biol. Chem. 267:24585–24590 (1992).

    PubMed  CAS  Google Scholar 

  32. J-Y. Cong, D.E. Goll, A.M. Peterson, and H-P. Kapprell, The role of autolysis in activity of the Ca2+-dependent proteinases (μ-calpain and m-calpain), J. Biol. Chem. 264:10096–10103 (1989).

    PubMed  CAS  Google Scholar 

  33. T. Edmunds, P.A. Nagainis, S.K. Sathe, V.F. Thompson, and D.E. Goll, Comparison of the autolyzed and unautolyzed forms of μ-and m-calpain from bovine skeletal muscle, Biochim. Biophys. Acta 1077:197–208 (1991).

    PubMed  CAS  Google Scholar 

  34. D.E. Goll, V.F. Thompson, R.G. Taylor, and T. Zalewska, Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14:549–556 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. M. Molinari, J. Anagli, and E. Carafoli, Ca2+-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form, J. Biol. Chem. 269:27992–27995 (1994).

    PubMed  CAS  Google Scholar 

  36. C. Crawford, N.R. Brown, and A.C. Willis, Studies of the active site of m-calpain and the interaction with calpastatin, Biochem. J. 296: 135–142 (1993).

    PubMed  CAS  Google Scholar 

  37. J-Y. Cong, V.F. Thompson, and D.E. Goll, Effect of monoclonal antibodies specific for the 28-kDa subunit on catalytic properties of the calpains, J. Biol. Chem. 268:25740–25747 (1993).

    PubMed  CAS  Google Scholar 

  38. J.S. Elce, C. Hegadorn, J. Simon, and C. Arthur, Autolysis, Ca2+requirement, and heterodimer stability in m-calpain, J. Biol. Chem. 272:11268–11275 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. M.N. Malik, M.D. Fenko, K. Iqbal, and H.M. Wisniewski, Purification and characterization of two forms of Ca2+-activated neutral protease from calf brain, J. Biol. Chem. 258:8955–8962 (1993).

    Google Scholar 

  40. M.N. Malik, M.D. Fenko, and H.M. Wisniewski, Purification and partial characterization of two forms of Ca2+-activated neutral protease from calf brain synaptosomes and spinal cord, Neurochem. Res. 9: 233–240 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. M.N. Malik, A.M. Sheikh, M.D. Fenko, and H. Wisniewski, Purification and degradation of purified neurofilament proteins by the brain calcium-activated neutral proteases, Life Sci. 39: 1335–1343 (1996).

    Google Scholar 

  42. T. Hirao and K. Takahashi, Purification and characterization of a calcium-activated neutral protease from monkey brain and its action on neuropeptides, J. Biochem. 96:775–784 (1984).

    PubMed  CAS  Google Scholar 

  43. N.L. Banik, E.L. Hogan, M.G. Jenkins, J.K. McDonald, W.W. McAlhaney, and M.B. Sostek, Purification of a calcium-activated neutral proteinase from bovine brain, Neurochem. Res. 8: 1389–1405 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. U.J.P. Zimmerman and W.W. Schlaepfer, Multiple forms ofCa2+-activated protease from rat brain and muscle, J. Biol. Chem. 259:3210–3218 (1993).

    Google Scholar 

  45. V.F. Thompson and D.E. Goll, Purification of μ-calpain, m-calpain, and calpastatin from animal tissues. In: “Methods in Molecular Biology: Calpain Methods and Protocols”, J.S. Elce, ed., Humana Press, Inc., Totowa, NJ. pp.3–16 (2000).

    Google Scholar 

  46. S. Kubota, T. Onaka, H. Murofishi, N. Ohsawa, and F. Takaku, Purification and characterization of high Ca2+-requiring neutral proteases from porcine and bovine brains, Biochemistry 25:8396–8402 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. K. Kamakura, S. Ishiura, H. Sugita, and Y. Toyokura, Identification of Ca2+-activated neutral protease (CANP) in the rat peripheral nerve, Biomed. Res. 3:91–94 (1982).

    CAS  Google Scholar 

  48. K. Kamakura, S. Ishiura, and H. Sugita, μ-Type calcium-activated neutral protease in the rat peripheral nerve, J. Neurosci. Res. 15167–173 (1986).

    Google Scholar 

  49. N.L. Banik, A.K. Chakrabarti, G.W. Konat, G. Gantt-Wilford, and E.L. Hogan, Calcium activated neutral proteinase (calpain) activity in C6 cell line: compartmentation of μ and m calpain, J. Neurosci. Res. 31:708–714 (1992).

    Article  PubMed  CAS  Google Scholar 

  50. N.L. Banik, G.H. DeVries, T. Neuberger, T. Russell, A.K. Chakrabarti, and E.L. Hogan, Calcium-activated neutral proteinase (CANP; calpain) activity in Schwann cells: immunofluorescence localization and compartmentation of μ and mCANP, J. Neurosci. Res. 29: 346–354 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. G.H. Geesink, D. Nonneman, and M. Koohmaraie, An improved purification protocol for heart and skeletal muscle calpastatin reveals two isoforms resulting from alternative splicing, Arch. Biochem. Biophys. 356:19–24 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. N.C. Kar and C.M. Pearson, A calcium-activated neutral protease in normal and dystrophic human muscle, Clin. Chim. Acta 73: 293–297 (1976).

    Article  PubMed  CAS  Google Scholar 

  53. L. Combaret, D. Taillandier, L. Voisin, S.E. Samuels, 0. Boespflug-Tanguy, and D. Attaix, No alteration in gene expression ofthe components ofthe ubiquittin-proteasome proteolytic pathway in dystrophin-deficient muscles, FEBS Lett. 393:292–296 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. M.J. Spencer and J.G. Tidball, Calpain concentration is elevated although net calcium dependent proteolysis is suppressed in dystrophin-deficient muscle, Exp. Cell Res. 203:107–114 (1992).

    Article  PubMed  CAS  Google Scholar 

  55. S. Ishiura, I. Nonaka, and H. Sugita, Ca2+-activated neutral protease: its degradative role in muscle cells, in: “Proceedings of the International Symp. on Muscular Dystrophy”, S. Ebashi, ed., Japan Medical Research Foundation Publication No. 16, University of Tokyo Press, Tokyo, Japan. pp. 265–282 (1982).

    Google Scholar 

  56. J.P. Leonard and M.M. Salpeter, Agonist-induced myopathy at the neuromuscularjunction is mediated by calcium, J. Cell Biol. 82: 811–819 (1979).

    Article  PubMed  CAS  Google Scholar 

  57. E.P. Hoffman, R.H. Brown, Jr., and L.M. Kunkel, Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:9190928 (1987).

    Article  Google Scholar 

  58. M. Koenig, A.P. Monaco, and L.M. Kunkel, The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein, Cell 53:219–228 (1988).

    Article  PubMed  CAS  Google Scholar 

  59. J.M. Ervasti and K.P. Campbell, Dystrophin and the membrane skeleton, Curr. Opin. Cell Biol. 582–87 (1993).

    Google Scholar 

  60. A. Menke and H. Jockusch, Extent of shock-induced membrane leakage in human and mouse myotubes depends on dystrophin, J. Cell Sci. 108, 727–733 (1995).

    PubMed  CAS  Google Scholar 

  61. P.R. Turner, R. Schultz, B. Ganguly, and R.A. Steinhardt, Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle, J. Membr. Biol. 133: 243–251 (1993).

    PubMed  CAS  Google Scholar 

  62. F.W. Hopf, P.R. Turner, W.F. Denetclaw, Jr., P. Reddy, and R.A. Steinhardt, A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle, Am. J. Physiol. 271:C1325–C1339 (1996).

    PubMed  CAS  Google Scholar 

  63. M.J. Cullen and J.J Fulthorpe, Phagocytosis of the A band following Z line and I band loss. Its significance in skeletal muscle breakdown, J. Path. 138: 129–143 (1982).

    PubMed  CAS  Google Scholar 

  64. M.J. Cullen and M.G. Pluskal, Early changes in the ultrastructure of denervated rat skeletal muscle, Exptl. Neurol. 56:115–131 (1977).

    Article  CAS  Google Scholar 

  65. H. Sugita, S. Ishiura, K, Suzuki, and K. Imahori, Ca-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils, Muscle & Nerve 3: 335–339 (1980).

    Article  CAS  Google Scholar 

  66. M.A. Badalamente and A. Stracher, Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition, Muscle & Nerve 23:106–111 (2000).

    Article  CAS  Google Scholar 

  67. J.H. Sher, A. Stracher, S.A. Shafiq, and J. Hardy-Stashin, Successful treatment of murine muscular dystrophy with the protease inhibitor leupeptin, Proc. Natl. Acad. Sci. 78:7742–7744 (1981).

    PubMed  CAS  Google Scholar 

  68. A. Stracher, E.B. McGowan, and S.A. Shafiq, Muscular dystrophy: inhibition of degeneration in vivo with protease inhibitors, Science 200:50–51 (1978).

    PubMed  CAS  Google Scholar 

  69. E.B. McGowan, S.A. Shafiq, and A. Stracher, Delayed degeneration of dystrophic and normal muscle cell cultures treated with pepstatin, leupeptin, and antipain, Exptl. Neurol. 50:649–657 (1976).

    Article  CAS  Google Scholar 

  70. A. Stracher, E.B. McGowan, A. Hedrych, and S.A. Shafiq, In vivo effect of protease inhibitors in denervation atrophy, Exptl. Neurol. 66:611–618 (1979).

    Article  CAS  Google Scholar 

  71. M.J. Spencer, D.E. Croall, and J.G. Tidball, Calpains are activated in necrotic fibers from mdx dystrophic mice, J. Biol. Chem. 270: 10909–10914 (1995).

    Article  PubMed  CAS  Google Scholar 

  72. T. Kumamoto, H. Ueyama, S. Watanabe, K. Yoshioka, T. Miike, D.E. Goll, M. Ando, and T. Tsuda, Immunohistochemical study of calpain and its endogenous inhibitor in the skeletal muscle of muscular dystrophy, Acta Neuropath. 89:399–403 (1995).

    PubMed  CAS  Google Scholar 

  73. T. Kumamoto, H. Ueyama, R. Sugihara, E. Kominami, D.E. Goll, and T. Tsuda, Calpain and cathepsins in the skeletal muscle of inflammatory myopathies, Eur. Neurol. 37:176–181 (1997).

    PubMed  CAS  Google Scholar 

  74. S. Kawashima, M. Nakamura, and M. Hayashi, Activities of calcium-activated proteases and its endogenous inhibitor in skeletal muscle of dystrophic hamster, Biol. Chem. Hoppe-Seyler 371:205–210 (1990).

    PubMed  CAS  Google Scholar 

  75. M.J. Spencer, J.G. Tidball, L.V.B. Anderson, K.M.D. Bushby, J.B. Harris, M.R. Passo-Bueno, H. Somer, M. Vainzof, and M. Zatz, Absence of calpain 3 in a form of limb-girdle muscular dystrophy(LGMD2A), J. Neurol. Sci. 146:173–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. Y. Ono, H. Shimada, H. Sorimachi, I. Richard, T.C. Saido, J.S. Beckmann, S. Ishiura, and K. Suzuki, Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A, J. Biol. Chem. 273:17073–17078 (1998).

    PubMed  CAS  Google Scholar 

  77. H. Sorimachi, N. Toyama-Sorimachi, T.C. Saido, H. Kawasaki, H. Sugita, M. Miyasaka, K-i. Arahata, S. Ishiura, and K. Suzuki, Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle, J. Biol. Chem. 268: 10593–10605 (1993).

    PubMed  CAS  Google Scholar 

  78. K. Kinbara, S. Ishuira, S. Tomioka, H. Sorimachi, S-Y. Jeong, S. Amano, H. Kawasaki, B. Kolmerer, S. Kimura, S. Labeit, and K. Suzuki, Purification of native p94, a muscle-specific calpain, and characterization of its autolysis, Biochem. J. 335:589–596 (1998).

    PubMed  CAS  Google Scholar 

  79. S. Baghdiguian, M. Martin, I. Richard, F. Pons, C. Astier, N. Bourg, R.T. Hay, R. Chemaly, G. Halaby, J. Loiselet, L.V.B. Anderson, A. Lopez de Munain, M. Fardeau, P. Mangeat, J.S. Beckmann, and G. Lefranc, Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkBa/NF-kB pathway in limb-girdle muscular dystrophy type 2A, Nature Medicine 5:503–511 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. K. Ohlendieck and K.P. Campbell, Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice, J. Cell Biol. 115:1685–1694 (1991).

    Article  PubMed  CAS  Google Scholar 

  81. A.A. Hack, M.E. Groh, and E.M. McNally, Sarcoglycans in muscular dystrophy, Microsc. Res. Tech. 48:167–180 (2000).

    Article  PubMed  CAS  Google Scholar 

  82. R.M. Grady, R.M. Grange, K.S. Lau, M.M. Maimone, M.C. Nichol, J.T. Stull, and J.R. Scanes, Role for a-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies, Nature Cell Biol. 1:215–220 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goll, D.E., Thompson, V.F., Li, H., Cong, J. (2002). The Role of the Calpain System in Neuromuscular Disease. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics