Skip to main content

Trypanosome Factors Controlling Population Size and Differentiation Status

  • Chapter
The African Trypanosomes

Part of the book series: World Class Parasites ((WCPA,volume 1))

Abstract

African trypanosomes undergo a complex life cycle involving an insect vector and vertebrate host. Growth, differentiation and population size in both the vector and host species are carefully controlled, ensuring survival and transmission of the parasite. Population control in vector and mammal hosts is associated with parasite transition from replicating to non-replicating forms, the latter of which is specialized for infection. Recently it was shown that bloodstream form trypanosomes release a low molecular weight factor that feeds back on the parasites causing them to cease division. We have found that the factor acts between the different African trypanosome species, consistent with a common mechanism of growth control. The factor also acts on tsetse-transmitted metacyclic form trypanosomes blocking their infectivity for mammals. Our data suggests that the factor is internalized via a trypanosome cell surface receptor, binds to adenosine ribosylation factor 1 and suppresses endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham, A. C. Liossis, L. O’Brien, and D.N. Brindley. 1997. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. Journal of Biol. Chem. 272: 1069–1075.

    CAS  Google Scholar 

  • Aktories, K. 1997. Rho proteins: targets for bacterial toxins. Trends Microbiol. 5: 282–288.

    Article  PubMed  CAS  Google Scholar 

  • Alexandre, S. P. Paindavoine, F. Hanocq-Quertier. F. Paturiaux-Hanocq, P. Tebabi, and E. Pays. 1996. Families of denylate cyclase genes in Trypanosoma brucei. Molecular and Biochemical Parasitology 77:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft, M.T. 1960. A comparison between a syringe passaged and a tsetse fly transmitted line of a strain of Trypanosoma rhodesiense. Annals of Tropical Medicine and Parasitology. 54: 44–70.

    PubMed  CAS  Google Scholar 

  • Bacchi. C.J., J. Garofalo, D. Mockenhaupt, P.P. McCann, K.A. Diekema, A.E. Pegg, H.C. Nathan, E.A. Mullaney, L. Chunosoff, A. Sjoerdsma, and S.H. Hutner. 1983. In vivo effects of alpha-DL-difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei. Molecular and Biochemical Parasitology 7:209–225.

    Article  PubMed  CAS  Google Scholar 

  • Balber, A. E. 1972. Trypanosoma brucei: fluxes of the morphological variants in intact and X-irradiated mice. Experimental Parasitology 31: 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Barry, J.D., and K. Vickerman. 1979. Trypanosoma brucei: loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Experimental Parasitology 48: 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Bass, K.E., and C.C. Wang. 1991. The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage. Molecular and Biochemical Parasitology 44: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Bienen. E.J., E. Hammadi, and G.C. Hill. 1981. Trypanosoma brucei: biochemical and morphological changes during in vitro transformation of bloodstream-to procyclic-trypomastigotes. Experimental Parasitology 51: 408–417.

    Article  PubMed  CAS  Google Scholar 

  • Black, S.J., C.N. Sendashonga, C. O’Brien, N.K. Borowy, J. Naessens. P. Webster, and M. Murray. 1985. Regulation of parasitaemia in mice infected with Trypanosoma brucei. Current Topics in Microbiology and Immunology 117, 93–118.

    PubMed  CAS  Google Scholar 

  • Bruce, M.C., C.A. Donnelly. M.P. Alpers. M.R. Galinski. J.W. Barnwell, D. Walliker, and K.P. Day. 2000. Cross-species interactions between malaria parasites in humans. Science 287: 845–848.

    Article  PubMed  CAS  Google Scholar 

  • Brun, R., and M. Schonenberger. 1981. Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z. Parasitenkd. 66: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Bulow, R., and P. Overath. 1985. Synthesis of a hydrolase for the membrane formvariant surface glycoprotein is repressed during transformation of Trypanosoma brucei. FEBS Letters 187: 105–110.

    PubMed  CAS  Google Scholar 

  • Carruthers, V.B.. and G.A.M. Cross. 1992. High-efficiency clonal growth of bloodstream-and insect-form Trypanosoma brucei on agarose plates. Proceedings of the National Academy of Sciences. USA 89: 8818–8821.

    CAS  Google Scholar 

  • Chavrier. P.. and B. Goud. 1999. The role of ARF and Rab GTPases in membrane transport. Current Opinion in Cell Biology 11: 466–475.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft, S. 1996. Phospholipid signaling in leukocytes. Current Opinion in Hematology 3: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Cross, G.A., L.E. Wirtz, and M. Navarro. 1998. Regulation of vsg expression site transcription and switching in Trypanosoma brucei. Molecular and Biochemical Parasitology 91: 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Czichos, J., C. Nonnengasser. and P. Overath. 1986. Trypanosoma brucei: cis-aconitate and temperature reduction as triggers of synchronous transformation of bloodstream to procyclic trypomastigotes in vitro. Experimental Parasitology 62: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • de Gee, A.L., P.H. Carstens. P.P. McCann, and J.M. Mansfield. 1984. Morphological changes in Trypanosoma brucei rhodesiense following inhibition of polyamine biosynthesis in vivo. Tissue and Cell 16: 731–738.

    PubMed  Google Scholar 

  • Dirie, M.F., S.L. Croft, and D.H. Molyneux 1986. Morphological changes of Trypanosoma vivax in mice. Veterinary Parasitology 19: 23–27.

    PubMed  CAS  Google Scholar 

  • Du, G., Y.M. Altshuller. Y. Kim, J.M. Han, S.H. Ryu, A.J. Morris, and M.A. Frohman. 2000. Dual requirement for rho and protein kinase C in direct activation of phopholipase D1 through G protein-coupled receptor signalling. Molecular Biology of the Cell 11: 4359–4368.

    PubMed  CAS  Google Scholar 

  • Dunlap, P.V. 1999. Quorum regulation of luminescence in Vibrio fischeri. Journal of MolecularMicrobiology and Biotechnology 1: 5–12.

    CAS  Google Scholar 

  • Dwinger, R.H., A.G. Luckins, M. Murray, P. Rae, and S.K. Moloo. 1986. Interference between different serodemes of Trypanosoma congolense in the establishment of superinfections in goats following transmission by tsetse. Parasite Immunology 8: 293–305.

    PubMed  CAS  Google Scholar 

  • —, M. Murray, A.G. Luckins, P.F. Rae, and S.K. Moloo. 1989. Interference in the establishment of tsetse-transmitted Trypanosoma congolense, T. brucei or T. vivax superinfections in goats already infected with T. congolense or T. vivax. Veterinary Parasitology 30: 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, L. 1999. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Systems in Applied Microbiology 22: 493–506.

    CAS  Google Scholar 

  • Estevez, A.M., and L. Simpson. 1999. Uridine insertion/deletion RNA editing in trypanosome mitochondria — a review. Gene 240: 247–260.

    PubMed  CAS  Google Scholar 

  • Fairbaim, H., and A. Culwick. 1947. The modification of Trypanosomu rhodesiense on prolonged syringe passage. Annals of Tropical Medicine and Parasitology 41: 26.

    Google Scholar 

  • Field, M.C., B.R.S. Ali, and H. Field. 1999. GTPases in protozoan parasites: tools for cell biology and chemotherapy. Parasitology Today 15: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Fish, W.R., C.W. Muriuki, A.M. Muthiani, D.J. Grab, and J.D. Lonsdale-Eccles. 1989. Disulfide bond involvement in the maintenance of the cryptic nature of the cross-reacting determinant ofmetacyclic forms of Trypanosoma congolense. Biochemistry 28: 5415–5421.

    Article  PubMed  CAS  Google Scholar 

  • Fraidenraich, D., C. Pena, E. L. Isola, E.M. Lammel, O. Coso, A.D. Anel, S. Pongor, F. Baralle, H.N. Torres, and M.M. Flawia. 1993. Stimulation of Trypanosoma cruzi adenylyl-cyclase by an â–¡(d.-globin fragment from Triatoma hindgut — effect on differentiation of epimastigote to trypomastigote forms. Proceedings of the National Academy of Sciences USA 90: 10140–10144.

    CAS  Google Scholar 

  • Gonzales-Perdomo, M., P. Romero, and S. Goldenberg. 1988. Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Experimental Parasitology 66: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annual Review of Genetics 29: 477–508.

    PubMed  CAS  Google Scholar 

  • Hamm, B., A. Schindler, D. Mecke, and M. Duszenko. 1990. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. Molecular and Biochemical Parasitology 40:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, H., P.H. Burri, and S. Bohringer. 1973. Quantitative ultrastructural differences in the mitochondrium of pleomorphic bloodforms of Trypanosoma brucei. Experientia 29:901–903.

    Article  PubMed  CAS  Google Scholar 

  • Hesse, F., P.M. Selzer, K. Muhlstadt, and M. Duszenko. 1995. A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Molecular and Biochemical Parasitology 70: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Hirumi, H., and K. Hirumi. 1989. Continuous cultivation of Trypanosoma brucei bloodstream forms in a medium containing a low concentration of serum protein without feeder cell layers. Journal of Parasitology 75: 985–989.

    PubMed  CAS  Google Scholar 

  • —, and K. Hirumi. 1991. In vitro cultivation of Trypanosoma congolense bloodstream forms in the absence of feeder cell layers. Parasitology 102: 225–236.

    PubMed  Google Scholar 

  • Hursey, B.S. 2001. The programme against African trypanosomiasis: aims, objectives and achievements. Trends in Parasitology 17: 2–3.

    PubMed  CAS  Google Scholar 

  • Jobling, J.G., and R.K. Holmes. 2000. Identification of motifs in cholera toxin AI polypeptide that are required for its interaction with human ADP-ribosylation factor 6 in a bacterial two-hybrid system. Proceedings of the National Academy of Sciences, USA 97: 14662–14667.

    Article  CAS  Google Scholar 

  • Ktistakis, N.T. 1998. Signalling molecules and the regulation of intracellular transport. Bioessays 20: 495–504.

    Article  PubMed  CAS  Google Scholar 

  • Mahan S.M., and S.J. Black. 1989. Differentiation, multiplication and control of bloodstream form Trypanosoma (Duttonella) vivax in mice. Journal of Protozoology 36: 424–428.

    PubMed  CAS  Google Scholar 

  • Malaquias, A.T., and M.M. Oliveira. 1999. Phospholipid signalling pathways in Trypanosoma cruzi growth control. Acta Tropica 73: 93–108.

    Article  PubMed  CAS  Google Scholar 

  • Mancini, P.E., and C.L. Patton. 1981. Cyclic 3’, 5’-adenosine monophosphate levels during the developmental cycle of Trypanosoma brucei brucei in the rat. Molecular and Biochemical Parasitology 3: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, K.R. 1999. Developments in the differentiation of Trypanosoma brucei. Parasitology Today 15, 76–80.

    Article  PubMed  CAS  Google Scholar 

  • —, and K. Gull. 1994. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. Journal of Cell Biology 125:1147–1156.

    PubMed  Google Scholar 

  • —, and K. Gull. 1998. Identification of stage-regulated and differentiation-enriched transcripts during transformation of the African trypanosome from its bloodstream to procyclic form. Molecular and Biochemical Parasitology 95: 81–95.

    PubMed  Google Scholar 

  • McLintock, L.M.L., C.M.R. Turner, and K. Vickerman. 1990. A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms. Parasitology 101: 49–55.

    PubMed  Google Scholar 

  • Morrison, W.I., P.W. Wells, S.K. Moloo, J. Paris, and M. Murray. 1982. Interference in the establishment of superinfections with Trypanosoma congolense in cattle. Journal of Parasitology 68: 755–764.

    PubMed  CAS  Google Scholar 

  • Mottram, J. C. 1994. Cdc2-related protein-kinases and cell-cycle control in trypanosomatids. Parasitology Today 10: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Nantulya, V.M., J.J. Doyle, and Jenni, L. 1978. Studies on Trypanosoma (Nannomonas) congolense. I. On the morphological appearance of the parasite in the mouse. Acta Tropica 35: 329–337.

    PubMed  CAS  Google Scholar 

  • Naula, C., and T. Seebeck. 2000. Cyclic AMP signaling in trypanosomatids. Parasitology Today 16, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, T.W. 1995. Trans-splicing: an update. Molecular and Biochemical Parasitology 73: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, D.P., M. Geuskens, and E. Pays. 1999. N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei. Current Biology 9: 1169–1172.

    Article  PubMed  CAS  Google Scholar 

  • —, S. Rolin, J.R. Rodriguez, J. Van Den Abbeele, and E. Pays. 2000. Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress. European Journal of Biochemistry 267: 18–27.

    Article  PubMed  CAS  Google Scholar 

  • Opperdoes, F.R. 1985. Biochemical peculiarities of trypanosomes, African and South American. British Medical Bulletin 41: 130–135.

    PubMed  CAS  Google Scholar 

  • Osanya, A.O. 1999. Identification and characterisation of differentially expressed sequence tags in Trypanosoma brucei brucei: Molecular cloning, expression and analysis of ADP ribosylation factor 1 from African trypanosomes. Ph.D. thesis, Department of biology and biochemistry, Brunel University, Uxbridge, U.K.

    Google Scholar 

  • Overath, P., J. Czichos, U. Stock, and C. Nonnengaesser. 1983. Repression of glycoprotein synthesis and release of surface coat during transformation of Trypanosoma brucei. EMBO Journal 2:1721–1728.

    PubMed  CAS  Google Scholar 

  • —, J. Czichos, and C. Haas. 1986. The effect of citrate/ cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. European Journal of Biochemistry 160:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Paindavoine, P., S. Rolin, S. Van Assel, M. Geuskens, J.-C. Jauniaux, C. Dinsart, G. Huet, and E. Pays. 1992. A gene from the variant surface glycoprotein expression site encodes one of several transmembrane adenylate cyclases located on the flagellum of Trypanosoma brucei. Molecular and Cellular Biology 12: 1218–1225.

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M. 1999. Vector-mediated drug delivery to the brain. Advances in Drug Delivery Reviews 36: 299–321.

    CAS  Google Scholar 

  • Parsons, M., and L. Ruben. 2000. Pathways involved in environmental sensing in trypanosomatids. Parasitology Today 16: 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Pays, E., J. Hanocq-Quertier, F. Hanocq, S. Van Assel, D. Nolan, and S. Rolin. 1993. Abrupt RNA changes precede the first cell division during the differentiation of Trypanosoma brucei bloodstream forms into procyclic forms in vitro. Molecular and Biochemical Parasitology 61:107–114.

    Article  PubMed  CAS  Google Scholar 

  • Penichet, M.L., Y.S. Kang, W.M. Pardridge, S.L. Morrison, and S.U. Shin. 1999. An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effective brain targeting: initial applications in anti-HIV antisense drug delivery to the brain. Journal of Immunology 163: 4421–4426.

    CAS  Google Scholar 

  • Randazzo, P.A., Z. Nie. K. Miura, and V. W. Hsu. 2000. Molecular Aspects of the Cellular Activities of ADP-Ribosylation Factors. Science’sSTKE: http://stke.sciencemag.org/cgi/content/full/OC sigtrans;2000/59/rel

  • Rangel-Aldao, R., F. Triana, V. Fernandez, G. Comach, T. Abate, and R. Montoreano. 1988. Cyclic AMP as an inducer of the cell differentiation of Typanosoma cruzi. Biochemistry International 17: 337–344.

    PubMed  CAS  Google Scholar 

  • Richardson, J.P., R.P. Beecroft, D.L. Tolson, M.K. Liu, T.W. Pearson. 1988. Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage ofAfrican trypanosomes. Molecular and Biochemical Parasitology 31: 203–216.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, M. 1912. Notes on the polymorphism of Trypanosoma gambiense in the blood and its relation to the exogenous cycle in Glossinapalpalis. Proceedings of the Royal Society of London B Biological Sciences 85: 241–539.

    Google Scholar 

  • Roditi, I., H. Schwartz, T.W. Pearson, R.P. Beecroft, M.K. Liu, J.P. Richardson, H.J. Buhring, J. Pleiss, R. Bulow, R.O. Williams, and P. Overath. 1989. Procyclin gene expression and loss of the variant surface protein during differentiation of Trypanosoma brucei. Journal of Cell Biology 108:737–746.

    Article  PubMed  CAS  Google Scholar 

  • Rolin, S, P. Paindavoine, J. Hanocq-Quertier, F. Hanocq, Y. Claes, D. Le Ray, P. Overath, and E. Pays. 1993. Transient adenylate cyclase activation accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms. Molecular and Biochemical Parasitology 61:115–126.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, U., H. Schroeder, and B.A. Sabel. 2000. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate. nanoparticles after i.v. injections to mice. Life Sciences 66: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Seed, J.R., and S.J. Black. 1997. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes. Journal of Parasitology 83: 656–662.

    PubMed  CAS  Google Scholar 

  • —, and S.J. Black. 1999. A revised arithmetic model of long slender to short stumpy transformation in the African trypanosomes. Journal of Parasitology 85: 850–854.

    PubMed  CAS  Google Scholar 

  • —, and J. Sechelski. 1988. Growth of pleomorphic Trypanosoma brucei rhodesiense in irradiated inbred mice. Journal of Parasitology 74:781–789.

    PubMed  CAS  Google Scholar 

  • —, and J.B. Sechelski. 1989. Mechanism of long slender (LS. to short stumpy (SS. transformation in the African trypanosomes. Journal of Protozoology 36:572–577.

    PubMed  CAS  Google Scholar 

  • Selzer. P.M.. F. Hesse. B. Hamm-Kunzelmann, K. Muhlstadt, H. Echner, and M. Duszenko. 1996. Down regulation of S-adenosyl-L-methionine decarboxylase activity of Trypanosoma brucei during transition from long slender to short stumpy-like forms in axenic culture. Eur. Journal of Cell Biology 69:173–179.

    CAS  Google Scholar 

  • Shapiro, S.Z., J. Naessens, B. Liesegang, S.K. Moloo, and J. Magondu. 1984. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop. 41: 313–323.

    PubMed  CAS  Google Scholar 

  • Sperandio, S., I. de Bell, and D.E. Bredesen. 2000. An alternative, nonapoptotic form of programmed cell death. Proceedings of the National Academy of Sciences, USA 97:14376–14381.

    Article  CAS  Google Scholar 

  • Stuart, K., T.E. Allen, M.L. Kable, and S. Lawson. 1997. Kinetoplastid RNA editing: complexes and catalysts. Current Opinion in Chemistry and Biology 1: 340–346.

    CAS  Google Scholar 

  • Tasker, M., J. Wilson, M. Sarkar, E. Hendriks, and K. Matthews. 2000. A novel selection regime for differentiation defects demonstrates an essential role for the stumpy form in the life cycle ofthe African trypanosome. Molecular Biology of the Cell 11:1905–1917.

    PubMed  CAS  Google Scholar 

  • Taylor, E.M., D.A. Otero. W.A. Banks, and J.S. O’Brien. 2000. Designing stable blood-brain barrier-permeable prosaptide peptides for treatment of central nervous system neurodegeneration. Journal of Pharmacological and Experimental Therapy 293:403–409.

    CAS  Google Scholar 

  • Turner, C.M.R., N. Aslam, and C. Dye. 1995. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology 111: 289–300.

    Article  PubMed  Google Scholar 

  • Tyler, K.M., K.R. Matthews, and K. Gull. 1997. The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers. Proceedings of the Royal Society of London B Biological Sciences 1387:1481–1490.

    Google Scholar 

  • Van Den Abbeele, J., Y. Claes, D. van Bockstaele, D. Le Ray, and M. Coosemans. 1999. Trypanosoma brucei spp. development in the tsetse fly: characterization ofthe post-mesocyclic stages in the foregut and proboscis. Parasitology 118: 469–478.

    Google Scholar 

  • Vanhamme, L., and E. Pays. 1995. Control of gene expression in trypanosomes. Microbiology Reviews 59: 223–240.

    CAS  Google Scholar 

  • Vassella, E., and M. Boshart. 1996. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Molecular and Biochemical Parasitology 82: 91–105.

    PubMed  CAS  Google Scholar 

  • —, B. Reuner, B. Yutzy, and M. Boshart. 1997. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the CAMP pathway. Journal of Cell Science 110: 2661–2671

    PubMed  CAS  Google Scholar 

  • Vickerman, K. 1965. Polymorphism and mitochondrial activity in sleeping sickness. Nature 208: 762–766.

    PubMed  CAS  Google Scholar 

  • —. 1985. Developmental cycles and biology of pathogenic trypanosomes. British Medical Bulletin 41: 105–114.

    PubMed  CAS  Google Scholar 

  • Welburn, S.C., and I. Maudlin. 1997. Control of Trypanosoma brucei brucei infections in tsetse, Glossina morsitans. Medical and Veterinary Entomology 11: 286–289.

    PubMed  CAS  Google Scholar 

  • —, and N.B. Murphy. 1998. Prohibitin proto-oncogene and RACK homologues are up-regulated in trypanosomes induced to undergo apoptosis and in naturally occurring terminally differentiated forms. Cell Death and Differentiation 5:615–622.

    Article  PubMed  CAS  Google Scholar 

  • WHO Expert Committee. 1998. Control and surveillance of African trypanosomiasis. World Health Organ. Tech. Rep. Ser. 881,I–VI, 1–114.

    Google Scholar 

  • Wijers, D.J.B., and K.C. Willett. 1960. Factors that may influence the infection rate of Glossinapalpalis with Trypanosoma gambiense: II. The number and morpholgy of the trypanosomes present in the blood of the host at the time of the infected feed. Annals of Tropical Medicine and Parasitology 54: 341–350.

    PubMed  CAS  Google Scholar 

  • Yasaka, T., S. Ichisaka, T. Katsumoto, H. Maki, M. Saji, G. Kimura, and K. Ohno. 1996. Apoptosis involved in density-dependent regulation of rat fibroblastic 3Y1 cell culture. Cell Structure and Function 21: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer, K., M. Quinten, H. Schwarz, T.W. Pearson, and P. Overath. 1990. Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. European Journal of Biochemistry 192: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • —, Stahl, M. Karas, Y.D. Stierhof, and P. Overath. 1993. Proteolytic release of cell surface proteins during differentiation of Trypanosoma brucei. Biochemistry 32: 3737–3742.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Murphy, N., Olijhoek, T. (2002). Trypanosome Factors Controlling Population Size and Differentiation Status. In: The African Trypanosomes. World Class Parasites, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-46894-8_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46894-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7512-8

  • Online ISBN: 978-0-306-46894-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics