Skip to main content

In situ Groundwater Remediation Using Treatment Walls

  • Chapter
Emerging Technologies in Hazardous Waste Management 8

Abstract

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few years. The main perceived advantage of this technology over ex situ and other in situ ground-water remediation approaches is reduced operation and maintenance costs. Since the first commercial application of zero-valent iron using a funnel-and-gate system for the removal of chlorinated hydrocarbons in February, 1995, several field- and pilot-scale studies are evaluating the feasibility of this technology for treatment of both organic and inorganic contaminants.

Although, considerable design details have already been developed through field- and pilot-scale applications of this technology, some critical issues (e.g., establishing tested and proven design procedures, improving construction technologies, documenting long-term performance, and evaluating synergy with other ground-water remediation technologies) still remain to be resolved. Currently planned field-scale tests and many ongoing laboratory studies are designed to address these issues and facilitate wider implementation of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A. and Tratnyek, P.G. (1996) “Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal.” Environ. Sci. Technol., 30:1, 153–160.

    CAS  Google Scholar 

  • Amonette, J.E., Szecsody, J.E., Schaef, H.T., Templeton, J.C., Gorby, Y.A., and Fruchter, J.S. (1994) “Abiotic Reduction of Aquifer Materials by Dithionite: A Promising In-Situ Remediation Technology.” 33rd Hanford Symposium on Health and the Environment, November 7–1I, Pasco, WA, Battelle Press, Columbus, OH.

    Google Scholar 

  • Bianchi-Mosquera, G.C., Allen-King, R.M., and Mackay, D.M. (1994) “Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen-Releasing Compound.” Groundwater Monitoring and Remediation, 14:1, 120–128.

    CAS  Google Scholar 

  • Bowman, R.S., Haggerty, G.M., Huddleston, R.G., Neel, D., and Flynn, M.M. (1994) “Sorption of Nonpolar Organic Compounds, Inorganic Cations, and Inorganic Oxyanions by Surfactant-Modified Zeolites.” Proceeding of the 207th ACS National Meeting, San Diego, CA, March 13–17. Chapter 5, 54–64.

    Google Scholar 

  • Bowman, R.S., Flynn, M.M., Haggerty, G.M., Huddleston, R.G., and Neel, D. (1994) “Organo-Zeolites for Sorption of Nonpolar Organics, Inorganic Cations, and Inorganic Anions.” Proceedings of 1993 CSCE-ASCE National Conference on Environmental Engineering, July 12–14, Montreal, Quebec. Canada, 1103–1109.

    Google Scholar 

  • Burris, D.R. and Antworth, C.P. (1992) “In Situ Modification of an Aquifer Material by a Cationic Surfactant to Enhance Retardation of Organic Contaminants.” J. Contaminant Hydrology, 10, 325–337.

    CAS  Google Scholar 

  • Burris, D.R., Campbell, T.J., and Manoranjan, V.S. (1995) “Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System.” Environ. Sci. Technol., 29:11. 2850–2855.

    Article  CAS  Google Scholar 

  • Charrier, M.J., Guibal. E., Roussy, J., Delanghe, B., and Le Cloirec, P. (1996) “Vanadium(IV) Sorption by Chitosan: Kinetics and Equilibrium.” Water Research, 30:2, 465–475.

    Google Scholar 

  • Chuang, F.W. and Larson, R.A. (1995) “Zero-Valent Iron-Promoted Dechlorination of Polychlorinated Biphenyls (PCBs).” Proceedings of 209th ACS National Meeting, Anaheim. CA, April 2–7, 771–774.

    Google Scholar 

  • Duba, A.G., Jackson, K.J., Jovanovich, M.C., Knapp, R.B., and Taylor, R.T. (1996) “TCE Remediation Using In Situ Resting-State Bioaugmentation.” Environ. Sci. Technol. 30:6, 1982–1989.

    Article  CAS  Google Scholar 

  • Duster, D., Edwards. R., Faile, M., Gallant, W., Gibeau, E., Myller, B., Nevling, K., and O’Grady, B. (1996) “Preliminary Performance Results from a Zero Valence Metal Reactive Wall for the Passive Treatment of Chlorinated Organic Compounds in Groundwater.” Presented at Tri-Service Environmental Technology Workshop, May 20–22, Hershey, PA.

    Google Scholar 

  • Dwyer, B.P., Marozas, D.C., Cantrell, K., and Stewart, W. (1996) “Laboratory and Field Scale Demonstration of Reactive Barrier Systems.” Proceedings of the 1996 Spectrum Conference in Seattle, WA, August 18–23.

    Google Scholar 

  • Environmental Protection Agency (1995) In Situ Remediation Technology Status Report: Treatment Walls, United States Environmental Protection Agency. EPA542-K-94-004, Washington. DC.

    Google Scholar 

  • Environmental Protection Agency (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation. United States Environmental Protection Agency, EPA/600/R-98/125, Washington, DC.

    Google Scholar 

  • Fairweather, V. (1996) “When Toxics Meet Metal.” Civil Engineering. 66:5, 44–48.

    Google Scholar 

  • Focht, R.M. and Gillham, R.W. (1995) ”Dechlorination of 1,2,3-Tricliloropropane by Zero-Valent Iron.” Proceedings of 209th ACS National Meeting, Anaheim, CA. April 2–7, 741–744.

    Google Scholar 

  • Fuhrmann, M., Aloysius, D., and Zhou, H. (1995) “Permeable, Subsurface Sorbent Barrier for 90Sr: Laboratory Studies of Natural and Synthetic Materials.” Proceedings of Waste Management’ 95, February, 26–March 2, 1995. Tuscon, AZ.

    Google Scholar 

  • Gantzer, C.J. and Wackett (1992) “Reductive Dechlorination Catalyzed by Bacterial Transition-Metal Coenzymes.” Environ. Sci. Technol., 25:4, 715–722.

    Google Scholar 

  • Gillham, R.W. and O’Hannesin, S.F. (1994) “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron.” Ground Water, 32:6, 958–967.

    Article  CAS  Google Scholar 

  • Grittini. C., Malcomson, M., Fernando, Q., and Korte, N. (1995) “Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of Pd/Fe Bimetallic System.” Environ. Sci. Technol., 29:1, 2898–2900.

    Article  CAS  Google Scholar 

  • Haggerty, G.M. and Bowman, R.S. (1994) “Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite.” Environ. Sci. Technol., 28:3, 452–458.

    Article  CAS  Google Scholar 

  • Hardy, L.I. and Gillham, R.W. (1996) “Formation of Hydrocarbons from the Reduction of Aqueous CO2 by Zero-Valent Iron.” Environ. Sci Technol., 30:1, 57–65.

    CAS  Google Scholar 

  • Ho, Y.S., Wase, D.A., and Forster, C.G. (1995) “Batch Nickel Removal from Aqueous Solution by Sphagnum Moss Peat.” Water Research, 29:5, 1327–1332

    Article  CAS  Google Scholar 

  • Johnson, T.L., Scherer, M.M., and Tratnyek, P.G. (1996) “Kinetics of Halogenated Organic Compound Degradation by Iron Metal.” Environ. Sci. Technol., 30:8. 2634–2641.

    Article  CAS  Google Scholar 

  • Kawamura, Y., Mitsuhashi, M., Tanibe, H., and Yoshida, H. (1993) “Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin.” Ind. Eng. Chem., 32, 386–391.

    CAS  Google Scholar 

  • Kleinmann, R.L.P., Tiernan, T.O., Solch, J.G., and Harris, R.L. (1983) “A Low-Cost, Low-Maintenance Treatment System for Acid Mine Drainage Using Sphagnum Moss and Limestone.” National Symposium on Surface Mining, Hydrology, Sedimentology and Reclamation, University of Kentucky, Lexington, KY.

    Google Scholar 

  • Koenigsberg, S., Johnson, J., Odenkrantz, J., and Norris, R. (1995) “Enhanced Intrinsic Bioremediation of Hydrocarbons with Oxygen Release Compound (ORC)” Sixth West Coast Conference on Contaminated Soils and Groundwater, March 11–14, Newport Beach, CA.

    Google Scholar 

  • Liang, L., West, O.R., Korte, N.E., Goodlaxson, J.D., Anderson, ED., Welch, C.A., and Pelfry, M. (1996) “A Field-Scale Test of Trichloroethylene Dechlorination using Iron Filings.” Interim Report on the X-749/K-120 Groundwater Treatment Facility submitted to Department of Energy, Piketon OH, May, 1996.

    Google Scholar 

  • Ma, Q.Y., Traina, S.J., Logan, T.J., and Ryan, J.A. (1993) “In Situ Lead Immobilization by Apatite.” Environ. Sci. Technol., 27:9, 1803–1810.

    Article  CAS  Google Scholar 

  • Ma, Q,Y., Traina, S.J., Logan, T.J., and Ryan, J.A. (1994) “Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Apatite.” Environ. Sci. Technol., 28:7, 1219–1228.

    CAS  Google Scholar 

  • Matheson, L.J. and Tratnyek, P.G. (1994) “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal.” Environ. Sci. Technol., 28:12, 2045–2053.

    CAS  Google Scholar 

  • Morrison, S.J. and Spangler, R.R. (1992) “Extraction of Uranium and Molybdenum from Aqueous Solution: A Survey of Industrial Materials for Use in Chemical Barriers for Uranium Mill Tailings Remediation.” Environ. Sci. Technol., 26:10, 1922–1931.

    Article  CAS  Google Scholar 

  • Morrison, S.J. and Spangler, R.R. (1993) “Chemical Barriers for Controlling Groundwater Contamination.” Environ. Progress, 12:3, 175–181.

    Article  CAS  Google Scholar 

  • Morrison, S.J., Spangler, R.R., and Tripathi, V.S. (1995) “Adsorption of Uranium(VI) on Amorphous Ferric Oxyhydroxide at High Concentrations of Dissolved Carbon(IV) and Sulfur(VI).” J. Contaminant Hydrology, 17, 333–346.

    CAS  Google Scholar 

  • Morrison, S.J., Tripathi, V.S., and Spangler, R.R. (1995) “Coupled Reaction/Transport Modeling of a Chemical Barrier for Controlling Uranium(VI) Contamination in Groundwater.” J. Contaminant Hydrology, 17, 347–363.

    CAS  Google Scholar 

  • Muftikian, R., Fernando, Q., and Korte, N. (1995) “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water.” Water Research, 29:10, 2434–2439.

    Article  CAS  Google Scholar 

  • Orth, WS. and Gillham, R.W. (1996) “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0.” Environ. Sci. Technol., 30:1, 66–71.

    Article  CAS  Google Scholar 

  • Oscarson, D.W., Hume, H.B., and King, F. (1994) “Sorption of Cesium on Compacted Bentonite.” Clays and Clay Minerals, 42:6, 731–736.

    CAS  Google Scholar 

  • Ouki, S.K., Cheesman, C., and Perry, R. (1993) “Effects of Conditioning and Treatment of Chabazite and Clinoptilolite Prior to Lead and Cadmium Removal.” Environ. Sci. Technol., 27:6, 1108–1116.

    Google Scholar 

  • PRC Environmental Management, Inc. (1996) Final Iron Curtain Bench-Scale Study Report, Department of the Navy Contract No. N62474-88-D-5086.

    Google Scholar 

  • Pulgarin, C., Schwitzguebel, J.P., Peringer, P., Pdjonk, G.M., Bandara, J., and Kiwi, J. (1995) “Abiotic Degradation of Atrazine on Zero-valent Iron Activated by Visible Light.” Proceedings of 209th ACS National Meeting, Anaheim, CA, April 2–7, 767–770.

    Google Scholar 

  • Puls, R.W., Powell, R.M., and Paul, C.J. (1995) “In Situ Remediation of Ground Water Contaminated with Chromate and Chlorinated Solvents Using Zero-Valent Iron: A Field Study.” Proceedings of the 209th ACS National Meeting, Anaheim, CA, April 2–7, 788–791.

    Google Scholar 

  • Ravary, C. and Lipczynska-Kochany, E. (1995) “Abiotic Aspects of Zero-Valent Iron Induced Degradation of Aqueous Pentachlorophenol.” Proceedings of 209th ACS National Meeting, Anaheim, CA, April 2–7, 738–740.

    Google Scholar 

  • Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., and Campbell, T.J. (1996) “Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals.” Environ. Sci. Technol., 30:8, 2654–2659.

    Article  CAS  Google Scholar 

  • Robertson, W.D. and Cherry, J.A. (1995) “In Situ Denitrification of Septic-System Nitrate Using Reactive Porous Media Barriers: Field Trials.” Ground Water, 33:1, 99–111.

    Article  CAS  Google Scholar 

  • Rorrer, G.L., Hsien, T.Y., and Way, J.D. (1993) “Synthesis of Porous-Magnetic Chitosan Beads for Removal of Cadmium Ions from Waste Water.” Ind. Eng. Chem., 32, 2170–2178.

    CAS  Google Scholar 

  • Schlimm, C. and Heitz, E. (1996) “Development of Wastewater Treatment Process: Reductive Dehalogenation of Chlorinated Hydrocarbons by Metals.” Environmental Progress, 15:1, 38–47.

    CAS  Google Scholar 

  • Siantar, D.P., Schrier, C.G., and Reinhard, M. (1995) “Transformation of the Pesticide 1,2-Dibromo-3-Chloropropane (DBCP) and Nitrate by Iron Powder and by H2/Pd/Al2O3.” Proceedings of 209th ACS National Meeting, Anaheim, CA, April 2–7, 745–748.

    Google Scholar 

  • Shoemaker, S.H., Greiner, J.F., and Gillham, R.W. (1996), in Assessment of Barrier Containment Technologies: A Comprehensive Treatment for Environmental Remediation Applications, R.R. Rumer and J.K. Mitchell, Eds., Chapter 11: Permeable Reactive Barriers. report prepared for US DOE, US EPA, and DuPont Company.

    Google Scholar 

  • Smith, J.A. and Jaffe, P.R. (1994) “Benzene Transport thorough Landfill Liners Containing Organophilic Bentonite.” J. Env. Engineering, ASCE, 120:6, 1559–1577.

    CAS  Google Scholar 

  • Smith, J.A. and Jaffe, P.R. (1994) “Adsorptive Selectivity of Organic-Cation-Modified Bentonite for Nonionic Organic Contaminants.” Water, Air and Soil Pollution, 72, 205–211.

    Article  CAS  Google Scholar 

  • Smith, J.A. and Galan, A. (1995) “Sorption of Nonionic Organic Contaminants to Single and Dual Organic Cation Bentonites from Water.” Environ. Sci. Technol., 29:3, 685–692.

    CAS  Google Scholar 

  • Starr, R.C. and Cherry, J.A. (1994) “In Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System.” Ground Water, 32:3, 465–476.

    Article  CAS  Google Scholar 

  • Taylor, R.T., Hanna, M.L., Shah, N.N., Shonnard, D.R., Duba, A.G., Durham, W.B., Jackson, K.J., Knapp, R.B., Wijesinghe, A.M., Knezovich, J.P., and Jovanovich, M.C. (1993) “In situ Bioremediation of Trichloroethylene-Contaminated Water by a Resting-Cell Methanotrophic Microbial Filter.” J. HydrologicalSciences, 38:4, 323–342.

    CAS  Google Scholar 

  • Thomas, A.O., Drury, D.M., Norris, G., O’Hannesin, S.F., and Vogan, J.L. (1995) “The In-Situ Treatment of Trichloroethene-Contaminated Groundwater Using a Reactive Barrier—Results of Laboratory Feasibility Studies and Preliminary Design Considerations.” Contaminated Soil’ 95, W.J. van den Brink, R. Bosman, and F. Arendt, Eds., Kluwer Academic Publishers, Netherlands, 1083–1091.

    Google Scholar 

  • Vogan, J.L., Gillham, R.W., O’Hannesin, S.F., Matulewicz, W.H., and Rhodes, J.E. (1995) “Site Specific Degradation of VOCs in Groundwater Using Zero Valent Iron.” Proceedings of 209th ACS National Meeting, Anaheim, CA, April 2–7, 800–804.

    Google Scholar 

  • Vogan, J. and Kwicinski, L. (1996) “Iron Walls Treat Groundwater.” Pennsylvania’s Environment: Business, Technology & The Environment, 1:12, 10–11.

    Google Scholar 

  • Weber. E.J. (1996) “Iron-Mediated Reductive Transformations: Investigation of Reaction Mechanism.” Environ. Sci. Technol., 30:2, 716–719.

    Article  CAS  Google Scholar 

  • Williams, M.D., Yabusaki, S.B., Cole, C.R., and Vermeul, V.R. (1994) “In-Situ Redox Manipulation Field Experiment: Design Analysis.” Thirty-Third Hanford Symposium on Health and the Environment, November 7–11, Pasco, WA, Battelle Press, Columbus, OH.

    Google Scholar 

  • Yamane, C.L., Warner, S.D. Gallinati, J.D., Szerdy, F.S., Delfino, T.A., Hankins, D.A., and Vogan, J.L. (1995) “Installation of a Subsurface Groundwater Treatment Wall Composed of Granular Zero-Valent Iron.” Proceedings of 209th ACS National Meeting, Anaheim, CA, April 2–7, 792–795.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vidic, R.D., Pohland, F.G. (2002). In situ Groundwater Remediation Using Treatment Walls. In: Tedder, D.W., Pohland, F.G. (eds) Emerging Technologies in Hazardous Waste Management 8. Springer, Boston, MA. https://doi.org/10.1007/0-306-46921-9_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46921-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46362-4

  • Online ISBN: 978-0-306-46921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics