Skip to main content

Metallization of Fluid Hydrogen at 140 GPA (1.4 Mbar)

  • Chapter
Strongly Coupled Coulomb Systems

Abstract

The properties of hydrogen at high pressures and temperatures are important for the interiors of giant planets, such as Jupiter and Saturn, and for Inertial Confinement Fusion. Electrical conductivity measurements indicate that hydrogen becomes a metallic fluid at 140 GPa, ninefold initial liquid-H2 density, and 2600 K. Metallization density is defined to be that at which the electronic bandgap Eg is reduced by pressure to Eg — kBT, at which point Eg is filled in by fluid disorder to produce a metallic density of states with a Fermi surface and the minimum conductivity of a metal. High pressures and temperatures were obtained with a two-stage gun, which accelerates an impactor up to 7 km/s. A strong shock wave is generated on impact with a holder containing liquid hydrogen at 20 K. The impact shock is split into a shock wave reverberating in hydrogen between stiff Al2O3 anvils. This dynamic compression heats hydrogen quasi-isentropically to about twice its melting temperature at 100 Gpa pressures and lasts ~100 ns, sufficiently long to achieve equilibrium and sufficiently short to preclude loss of hydrogen by mass diffusion and chemical reactions.

The measured electrical conductivity increases four orders of magnitude from 93 to 140 GPa and is constant at 2000 (Ω-cm)-1 from 140 to 180 GPa. This conductivity is the same as that of Cs and Rb undergoing the same transition from a semiconducting to metallic fluid at 2000 K. This measured value is also within factor of 5 or less of hydrogen conductivities calculated with the following models: (i) minimum conductivity of a metal, (ii) Ziman model of a liquid metal, and (iii) tight-binding molecular dynamics. At metallization this fluid is ç90 at.% H2 and 10 at.% H with a Fermi energy of ç12 eV. Fluid hydrogen at finite temperature undergoes a Mott transition at Dm 10a*=0.30, where Dm is the metallization density and a* is the Bohr radius of the molecule. Metallization occurs at a lower pressure in the fluid than predicted for the solid probably because crystalline and orientational phase transitions, which occur in the ordered solid and inhibit metallization, do not occur in the fluid

Tight-binding molecular dynamics calculations by Lenosky et al suggest that fluid metallic hydrogen is a novel state of condensed matter. Protons are paired transiently and exchange on a timescale of a few molecular vibrational periods, ç10–14 s. Also, the kinetic, vibrational, and rotational energies of the dynamically paired protons are comparable. These tight-binding calculations indicate that the measured conductivity is the minimum conductivity of a metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Wigner and H. B. Huntington, On the possibility of a metallic modification of hydrogen, J. Chem. Phys. 3:764 (1935).

    Article  ADS  Google Scholar 

  2. B. J. Alder and R. H. Christian, Destruc tion of diatomic bonds by pressure, Phys. Rev. Lett. 4:450 (1960).

    Article  ADS  Google Scholar 

  3. N. W. Ashcroft, Pairing instabilities in dense hydrogen, Phys. Rev. B41:10 963 (1990).

    Google Scholar 

  4. P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, X-ray diffraction and equation of state of hydrogen at megabar pressures, Nature 383:702 (1996).

    Article  ADS  Google Scholar 

  5. A Garcia, T. W. Barbee, M. L. Cohen, and I. F. Silvera, Band gap closure and metallization of molecular solid hydrogen, Europhys. Lett. 13:355 (1990).

    Article  ADS  Google Scholar 

  6. H. Chacham and S. G. Louie, Metallization of solid hydrogen at megabar pressures: a first-principles quasiparticle study, Phys. Rev. Lett. 66:64 (1991).

    Article  ADS  Google Scholar 

  7. E. Kaxiras, J. Broughton, and R. J. Hemley, Onset of metallization and related transitions in solid hydrogen, Phys. Rev. Lett. 67:1138 (1991).

    Article  ADS  Google Scholar 

  8. H. N. Chen, E. Sterer, and I. F. Silvera, Extended infrared studies of high pressure hydrogen, Phys. Rev. Lett. 76:1663 (1996).

    Article  ADS  Google Scholar 

  9. R. J. Hemley, H. K. Mao, A. F. Goncharov, M. Hanfland, and V. Struzhkin, Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures, Phys. Rev. Lett. 76:1667 (1996).

    Article  ADS  Google Scholar 

  10. A. L. Ruoff, Hydrogen at multimegabar pressures, in “High Pressure Science and Technology” W. Trzeciakowski, ed., World Scientific, Singapore (1996).

    Google Scholar 

  11. M. Mayor and D. Queloz, A Jupiter-mass companion to a solar-type star, Nature 378:355 (1995).

    Article  ADS  Google Scholar 

  12. M. Ross, H. C. Graboske, and W. J. Nellis, Equation of state experiments and theory relevant to planetary modelling, Phil. Trans. R. Soc. Lond. A 303:303 (1981).

    Article  ADS  Google Scholar 

  13. J. D. Lindl, R. L. McCrory, and E. M. Campbell, Progress toward ignition and burn propagation in inertial confinement fusion, Physics Today September:32 (1992).

    Google Scholar 

  14. J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2:3933 (1995).

    Article  ADS  Google Scholar 

  15. N. W. Ashcroft, Dense hydrogen: the reluctant alkali, Physics World 8:43 (1995).

    Google Scholar 

  16. B. Edwards and N. W. Ashcroft, Spontaneous polarization in dense hydrogen, Nature 388:652 (1997).

    Article  ADS  Google Scholar 

  17. F. Datchi and P. Loubeyre, University of Pierre and Marie Curie, private communication, 1996.

    Google Scholar 

  18. V. Diatschenko, C. W. Chu, D. H. Liebenberg, D. A. Young, M. Ross, and R. L. Mills, Melting curves of molecular hydrogen and molecular deuterium under high pressures between 20 and 373 K, Phys. Rev. B 32:381 (1985).

    ADS  Google Scholar 

  19. K. M. Ogilvie and G. E. Duvall, Shock-induced changes in the electronic spectra of liquid CS2, J. Chem Phys. 78:1077 (1983).

    Article  ADS  Google Scholar 

  20. N. C. Holmes, M. Ross, and W. J. Nellis, Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen, Phys. Rev. B 52:15 835 (1995).

    Google Scholar 

  21. G. I. Kerley, A model for the calculation of thermodynamic properties of a fluid, in “Molecular-Based Study of Fluids,” J. M. Haile and G. A. Mansoori, eds., American Chemical Society, Washington (1983).

    Google Scholar 

  22. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar), Phys. Rev. Lett. 76:1860 (1996).

    Article  ADS  Google Scholar 

  23. W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine, and S. T. Weir, Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures, Phys. Rev. Lett. 68:2937 (1992).

    Article  ADS  Google Scholar 

  24. F. Hensel and P. Edwards, The changing phase of liquid metals, Phys. World April:43 (1996).

    Google Scholar 

  25. T. W. Barbee III, LLNL, private communication (1996).

    Google Scholar 

  26. T. J. Lenosky, J. D. Kress, L. A. Collins, and I. Kwon, Molecular dynamics modeling of shock-compressed liquid hydrogen, Phys. Rev. B 55:R11 907 (1997).

    Google Scholar 

  27. J. Kress, L. Collins, T. Lenosky, I. Kwon, and N. Troullier, Molecular dynamics modeling of dense hydrogen, this proceedings.

    Google Scholar 

  28. N. F. Mott and E. A. Davis. “Electronic Processes in Non-Crystalline Materials,” Oxford, London (1971), p. 81.

    Google Scholar 

  29. N. W. Ashcroft and N. D. Mermin, “Solid State Physics,” Holt, Rinehart, and Winston, New York (1976), p. 44.

    Google Scholar 

  30. W. J. Nellis, A. A. Louis and N. W. Ashcroft, Metallization of fluid hydrogen, Phil. Trans. R. Soc. London A 356:119 (1998).

    Article  ADS  Google Scholar 

  31. V. V. Brazhkin, S. V. Popova, R. N. Voloshin, and A. G. Umnov, Metallization of liquid iodine under high pressure, High Pressure Res. 6:363 (1992).

    Article  ADS  Google Scholar 

  32. B. M. Riggleman and H. G. Drickamer, Approach to the metallic state as obtained from optical and electrical measurements, J. Chem. Phys. 38:2721 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nellis, W.J., Weir, S.T., Mitchell, A.C. (2002). Metallization of Fluid Hydrogen at 140 GPA (1.4 Mbar). In: Kalman, G.J., Rommel, J.M., Blagoev, K. (eds) Strongly Coupled Coulomb Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47086-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47086-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46031-9

  • Online ISBN: 978-0-306-47086-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics