Skip to main content

Simulation of STM Images and STS Spectra of Carbon Nanotubes

  • Chapter
Science and Application of Nanotubes

Part of the book series: Fundamental Materials Research ((FMRE))

  • 295 Accesses

Conclusions

The computation of the STS spectra of carbon nanotubes indicates that, the dI/dV curves reproduce well the essential features of local density of states. The simulation of the STM topographic profiles show that the nanotube images with atomic resolution are affected by a geometric distortion induced by the curvature of the tube. This distortion stretches the honeycomb network in the direction normal to the axis, and influences the measured helicity. Like single-wall tubules, multi-wall nanotubes do not present a site asymmetry similar to that of multilayer graphite, except for special, symmetric configurations. Geometrical and topographic defects have typical signatures in STM that might identify them. In particular, a somewhat larger protrusion is predicted to occur on a pentagon, more especially with a negative bias of the tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature 391, 59 (1998).

    CAS  Google Scholar 

  2. T.W. Odom, J.L. Huang, Ph. Kim, and Ch.M. Lieber, Nature 391, 62 (1998).

    CAS  Google Scholar 

  3. A. Hassanien, M. Tokumoto, Y. Kumazawa, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Appl. Phys. Lett. 73, 3839 (1998).

    Article  CAS  Google Scholar 

  4. M. Ge and K. Sattler, Science 260, 515 (1993).

    CAS  Google Scholar 

  5. M.J. Gallagher, D. Chen, B.P. Jacobsen, D. Sarid, L.D. Lamb, F.A. Tinker, J. Jiao, D.R. Huffman, S. Seraphin, and D. Zhou, Surf. Sci. 281, L335 (1993).

    Article  CAS  Google Scholar 

  6. T.W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993).

    Article  CAS  Google Scholar 

  7. Z. Zhang and C.M. Lieber, Appl. Phys. Lett. 62, 2792 (1993).

    CAS  Google Scholar 

  8. V. Meunier and Ph. Lambin, Phys. Rev. Lett. 81, 5888 (1998).

    Article  Google Scholar 

  9. L.P. Biró, S. Lazarescu, Ph. Lambin, P.A. Thiry, A. Fonseca, J. B. Nagy, and A.A. Lucas, Phys. Rev. B 56, 12490 (1997).

    Google Scholar 

  10. G.I. Márk, L.P. Biró, and J. Gyulai, Phys. Rev. B 58, 12645 (1998).

    Google Scholar 

  11. D.L. Carroll, P. Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. De Vita, and R. Car, Phys. Rev. Lett. 78, 2811 (1997).

    Article  CAS  Google Scholar 

  12. A. Rubio, D. Sanchez-Portal, E. Artacho, P. Ordejon, and J.M. Soler, Phys. Rev. Lett. 82, 3520 (1999).

    Article  CAS  Google Scholar 

  13. L.C. Venema, J.W.G. Wildoer, J.W. Janssen, S.J. Tans, H.L.J. Temminck Tuin-stra, L.P. Kouwenhoven, and C. Dekker, Science 283, 52 (1999).

    Article  CAS  Google Scholar 

  14. A. Rubio, Appl. Phys. A 68, 275 (1999).

    Article  CAS  Google Scholar 

  15. K. Kobayashi and M. Tsukada, J. Vac. Sci. Technol. A 8, 170 (1990).

    CAS  Google Scholar 

  16. J. Tersoff and D.R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).

    CAS  Google Scholar 

  17. R. Haydock, V. Heine, and M.J. Kelly, J. Phys. C Solid St. Phys. 5, 2845 (1972).

    Article  CAS  Google Scholar 

  18. J. Inoue, A. Okada, and Y. Ohta, J. Phys.: Condens. Matter 5, L465 (1995).

    Google Scholar 

  19. The ground-sate electronic structure of the nanotubes and the local density of states were computed with the pseudopotential density functional technique (DFT) B.I. Yakobson, and J. Bernholc, Phys. Rev. B 57, R4277 (1998); P. Zhang, P.E. Lammert, and V.H. Crespi, Phys. Rev. Lett. 81, 5346 (1998). M.L. Cohen, Solid State Commun. 92, 45 (1994); Phys. Scri. 1, 5 (1982); J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12, 4409 (1979) 52,53 using plane-wave expansions with a cut-off energy of 48 Ry. The convergence with respect to both the plane-wave cutoff and super-cell size has been carefully checked. Norm-conserving pseudopotentials as proposed by Troullier and Martins 54 were used. As usual, the exchange and correlation effects were described within the local density approximation using the Perdew-Zunger parametrization of the Ceperley-Alder data. 55

    Google Scholar 

  20. J.C. Charlier, J.P. Michenaud, and Ph. Lambin, Phys. Rev. B 46, 4540 (1992).

    CAS  Google Scholar 

  21. D. Tománek and S.G. Louie, Phys. Rev. B 37, 8327 (1988).

    Google Scholar 

  22. P. Kim, T. Odom, J.L. Huang, and C.M. Lieber, Phys. Rev. Lett. 82, 1225 (1999).

    CAS  Google Scholar 

  23. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  CAS  Google Scholar 

  24. N. Hamada, S.I. Sawada and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  CAS  Google Scholar 

  25. K. Tanaka, K. kahara, M. Okada, and T. Yamabe, Chem. Phys. Lett. 191, 469 (1992).

    Article  CAS  Google Scholar 

  26. J.W. Mintmire and C.T. White, Phys. Rev. Lett. 81, 2506 (1998),.

    Article  CAS  Google Scholar 

  27. J.C. Charlier and Ph. Lambin, Phys. Rev. B 57, R15037 (1998).

    Article  CAS  Google Scholar 

  28. C.L. Kane and E.J. Mele, Phys. Rev. B 59, R12759 (1999).

    Article  CAS  Google Scholar 

  29. Ph. Lambin, A. Fonseca, J.P. Vigneron, J.B. Nagy, and A.A. Lucas, Chem. Phys. Lett. 245, 85 (1995).

    Article  CAS  Google Scholar 

  30. Ph. Lambin, A.A. Lucas, and J.C. Charlier, J. Phys. Chem. Soliods 58, 1833 (1997).

    CAS  Google Scholar 

  31. The electronic structure is easily resolved in shortest pieces of armchair nanotubes. See V. Meunier and Ph. Lambin, Phys. Rev. B (1999, in press).

    Google Scholar 

  32. M. Ge and K. Sattler, Appl. Phys. Lett. 65, 2284 (1994).

    Article  CAS  Google Scholar 

  33. L.C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Phys. Rev. B, submitted (July 1999).

    Google Scholar 

  34. L.C. Venema, J.W.G. Wildoer, C. Dekker, A.G. Rinzler, and R.E. Smalley, Appl. Phys. A 66, S153 (1998).

    Article  Google Scholar 

  35. N. Lin, J. Ding, S. Yang, and N. Cue, Carbon 34, 1295 (1996).

    Article  CAS  Google Scholar 

  36. Ph. Lambin, J.C. Charlier, and J.P. Michenaud, in “Progress in fullerene research”, H. Kuzmany, J. Fink, M. Mehring, and S. Roth (Edits.), World Scientific, Singapore, 130 (1994).

    Google Scholar 

  37. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).

    Article  CAS  Google Scholar 

  38. Y.K. Kwon and D. Tománek, Phys. Rev. B 58, R16001 (1998).

    Article  CAS  Google Scholar 

  39. R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).

    CAS  Google Scholar 

  40. V. Meunier, Ph D Thesis, University of Namur, Belgium (in preparation).

    Google Scholar 

  41. J.C. Charlier and J.P. Michenaud, Phys. Rev.Lett. 70, 1858 (1993).

    Article  CAS  Google Scholar 

  42. W. Clauss, D.J. Bergeron, and A.T. Johnson, Phys. Rev. B 58, R4266 (1998).

    Article  CAS  Google Scholar 

  43. C.L. Kane and E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  CAS  Google Scholar 

  44. B.I. Dunlap, Phys. Rev. B 46, 1933 (1992).

    Article  CAS  Google Scholar 

  45. S. lijima, T. Ichihashi, and Y. Ando, Nature 356, 776 (1992).

    Article  Google Scholar 

  46. M. Terrones, W.K. Hsu, J.P. Hare, H.W. Kroto, H. Terrones, and D.R.M. Walton, Phil. Trans. R. Soc. London A 354, 2025 (1996).

    CAS  Google Scholar 

  47. C. Dekker, Physics Today 52, 22 (May 1999).

    CAS  Google Scholar 

  48. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 53, 2044 (1996).

    CAS  Google Scholar 

  49. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996).

    Article  CAS  Google Scholar 

  50. A.J. Stone and D.J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  CAS  Google Scholar 

  51. H. Terrones and M. Terrones, J. Phys. Chem. Solids 58, 1789 (1997).

    Article  CAS  Google Scholar 

  52. M. Buongiorno Nardelli, B.I. Yakobson, and J. Bernholc, Phys. Rev. B 57, R4277 (1998); P. Zhang, P.E. Lammert, and V.H. Crespi, Phys. Rev. Lett. 81, 5346 (1998).

    Article  CAS  Google Scholar 

  53. M.L. Cohen, Solid State Commun. 92, 45 (1994); Phys. Scri. 1, 5 (1982); J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12, 4409 (1979).

    Article  CAS  Google Scholar 

  54. W.E. Pickett, Comput. Phys. Rep. 9, 115 (1989); M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  Google Scholar 

  55. N. Troullier, J.L. Martins, Solid State Commun. 74 (1990) 613; Phys. Rev. B 43, 1993 (1991).

    Google Scholar 

  56. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 1196 (1980); J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lambin, P., Meunier, V., Rubio, A. (2002). Simulation of STM Images and STS Spectra of Carbon Nanotubes. In: Thorpe, M.F., Tománek, D., Enbody, R.J. (eds) Science and Application of Nanotubes. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47098-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47098-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46372-3

  • Online ISBN: 978-0-306-47098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics