Skip to main content

Electrophoretic Light Scattering

Zeta Potential Measurement

  • Chapter
Particle Characterization: Light Scattering Methods

Part of the book series: Particle Technology Series ((POTS,volume 13))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter, R., Zeta Potential in Colloid Science, Academic Press, New York, 1981

    Google Scholar 

  2. Hunter, R., Foundations of Colloid Sciences, Oxford Science Publications, London, 1987

    Google Scholar 

  3. Surfactant Science Series 76: Electrical Phenomena at Interfaces, Eds. Ohshima, H., Furusawa, K., Marcel Dekker, New York, 1998.

    Google Scholar 

  4. Henry, D. C., The Cataphoresis of Suspended Particles. Part I. The Equation of Cataphoresis, Proc. R. Soc. London, 1931, A133, 106–129.

    CAS  Google Scholar 

  5. Wiersema, P. H., Loeb, A. L., Overbeek, J. Th. G., Calculation of the Electrophoretic Mobility of a Spherical Colloid Particle, J. Colloid Interface Sci., 1966, 22, 78–99.

    Article  CAS  Google Scholar 

  6. O’Brian, R. W., White, L. R., Electrophoretic Mobility of a Spherical Colloidal Particle, J. Chem. Soc. Faraday Trans. 2, 1978, 74, 1607–1626.

    Google Scholar 

  7. Deggelmann, M., Palberg, T., Hagenbuchle, M., Maire, E., Krause, R., Graf, C., Weber, R., Electrokinetic Properties of Aqueous Suspensions of Polystyrene Spheres in the Gas and Liquid-like Phase, J. Colloid Interface Sci., 1991, 143, 318–326.

    Article  CAS  Google Scholar 

  8. Grosse, C., Shilov, V. N., Electrophoretic Mobility of Colloidal Particles in Weak Electrolyte Solutions, J. Colloid Interface Sci., 1999, 211, 160–170.

    Article  CAS  Google Scholar 

  9. Solomentsev, Y. E., Pawar, Y., Anderson, J., Electrophoretic Mobility of Non-uniformly Charged Spherical Particles with Polarization of the Double Layer, J. Colloid Interface Sci., 1993, 158, 1–9.

    Article  CAS  Google Scholar 

  10. O’Brien, R. W., The Dynamic Mobility of a Porous Particle, J. Colloid Interface Sci., 1995, 171, 495–504.

    Google Scholar 

  11. Ohshima, H., Electrophoretic Mobility of a Polyelectrolyte Adsorbed Particle: Effect of Segment Density Distribution, J. Colloid Interface Sci., 1997, 185, 269–273.

    CAS  Google Scholar 

  12. Ohshima, H., Dynamic Electrophoretic Mobility of a Cylindrical Colloidal Particle, J. Colloid Interface Sci., 1997, 185, 131–139.

    CAS  Google Scholar 

  13. De Keizer, A., van der Drift, W. P. J. T., Overbeek, J. Th. G., Electrophoresis of Randomly Oriented Cylindrical Particles, Biophys. Chem., 1975, 3, 107–108.

    CAS  Google Scholar 

  14. Stigter, D., Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt Solutions. 1. Mobility in Transverse Field, J. Phys. Chem., 1978, 82, 1417–1423.

    CAS  Google Scholar 

  15. Morrison, F. A., Transient Electrophoresis of an Arbitrarily Oriented Cylinder, J. Colloid Interface Sci., 1971, 36, 139–145.

    Article  Google Scholar 

  16. Keh, H. J., Chen, S. B., Diffusiophoresis and Electrophoresis of Colloidal Cylinders, Langmuir, 1993, 9, 1142–1148.

    Article  CAS  ISI  Google Scholar 

  17. Yoon, B. J., Kirn, S., Electrophoresis of Spheroidal Particles, J. Colloid Interface Sci., 1989, 128, 275–288.

    Article  CAS  Google Scholar 

  18. O’Brien, R. W., Ward, D. N., Electrophoresis of A Spheroid with a Thin Double Layer, J. Colloid Interface Sci., 1988, 121, 402–413.

    Google Scholar 

  19. Fair, M. C., Anderson, J. L, Electrophoresis of Non-uniformly Charged Ellipsoidal Particles, J. Colloid Interface Sci., 1988, 127, 388–395.

    Google Scholar 

  20. Smoluchowski, M. v., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chem., 1918, 92, 129–168.

    Google Scholar 

  21. Tanford, C., Physical Chemistry of Macromolecules, Wiley, New York, 1961.

    Google Scholar 

  22. Reuss, A., Mem. Soc. Imp. D. Moscow, 1807, t.11, 327.

    Google Scholar 

  23. Takagi, T., Electrophoretic Light Scattering-a new apparatus applicable to proteins to cells, Japanese J. Electrophoresis, 1992, 36, 21–31.

    CAS  Google Scholar 

  24. Tiselius, A., A New Apparatus for Electrophoretic Analysis of Colloidal Mixture, Trans. Faraday Soc., 1937, 33, 524–531.

    Article  CAS  Google Scholar 

  25. Alberty, R. A., An Introduction to Electrophoresis, J. Chem. Educ., 1948, 25, 426–433, 619–629.

    CAS  Google Scholar 

  26. Ware, B. R., Flygare, W. H., The Simultaneous Measurement of the Electrophoretic Mobility and Diffusion Coefficient in Bovine Serum Albumin Solutions by Light Scattering, Chem. Phys. Lett., 1971, 12, 81–85.

    Article  CAS  Google Scholar 

  27. Uzgiris, E. E., Measurement of Electrophoresis by Laser Light Scattering, Biophys. J., 1972, 12, 1439.

    Google Scholar 

  28. Ware, B. R., Haas, D. D., Electrophoretic Light Scattering, in Fast Methods in Physical Biochemistry and Cell Biology, Eds. Sha’afi, R. I., Fernandez, S. M., Elsevier, New York, 1983, Chpt.8, p173–220.

    Google Scholar 

  29. Durst, F., Melling, A., Whitelaw, J. H., Principles and Practices of Laser-Doppler Anemometry, 2nd Ed., Academic Press, London, 1981.

    Google Scholar 

  30. Xu, R., Schmitz, B., Lynch, M., A Fiber Optic Frequency Shifter, Rev. Sci. Instrum., 1997, 68, 1952–1961.

    CAS  Google Scholar 

  31. Debye, P., Sears, F. W., Proc. Natl. Acad. Sci. USA, 1932, 18, 409.

    CAS  Google Scholar 

  32. Mazumder, M. K., Laser Doppler Velocity Measurement without Directional Ambiguity by Using Frequency Shifted Incident Beams, App. Phys. Lett., 1970, 16, 462–464.

    Article  Google Scholar 

  33. Suzuki, T., Hioki, R., Translation of Light Frequency by a Moving Grating, J. Opt. Soc. Am., 1967, 57, 1551–1551.

    Article  Google Scholar 

  34. Abramson, H. A., Microscopic Method of Electrophoresis, J. Phys. Chem., 1932, 36, 1454.

    CAS  Google Scholar 

  35. Smith, M. E., Lisse, M. W., A New Electrophoresis Cell for Microscopic Observations, J. Phys. Chem., 1936, 40, 399–412.

    Article  CAS  Google Scholar 

  36. Beniams, H., Gustavson, R. G., The Theory and Application of a Two-path Rectangular Microelectrophoresis Cell, J. Phys. Chem., 1942, 46, 1015–1023.

    Article  CAS  Google Scholar 

  37. Hamilton, J. D., Stevens, T. J., A Double-tube Flat Microelectrophoresis Cell, J. Colloid Interface Sci., 1967, 25, 519–525.

    Article  CAS  Google Scholar 

  38. Rutgers, A. J., Facq, L., van der Minne, J. L., A Microscopic Electrophoresis Cell, Nature, 1950, 166, 100–102.

    CAS  ISI  Google Scholar 

  39. Haas, D. D., Ware, B. R., Design and Construction of a New Electrophoretic Light-scattering Chamber and Application to Solutions of Hemoglobin, Anal. Biochem., 1976, 74, 175–188.

    Article  CAS  Google Scholar 

  40. Oka, K., Furusawa, K., Electrophoresis, in Surfactant Science Series 76: Electrical Phenomena at Interfaces, Eds. Ohshima, H., Furusawa, K., Marcel Dekker, New York, 1998, Chpt.8, p.151–224.

    Google Scholar 

  41. Emoto, K., Harris, J. M., Van Alstine, J. M., Grafting Poly(ethylene glycol) Epoxide to Amino-derivatized Quartz: Effect of Temperature and pH on Grafting Density, Anal. Chem. 1996, 68, 3751–3757.

    Article  CAS  Google Scholar 

  42. White, P., Theory of Electroosmotic Circulation in Closed Vessels, Phil. Mag., 1937, 23, 811–823.

    CAS  Google Scholar 

  43. Komagata, S., Researches of the Electrotechnical Laboratory, Ministry of Communications, Tokyo, 1933, March, p.348.

    Google Scholar 

  44. Burns, N. L., Surface Characterization Through Measurement of Electroosmosis at Flat Plates, J. Colloid Interface Sci., 1996, 183, 249–259.

    Article  CAS  Google Scholar 

  45. Oka, K., Otani, W., Kameyama, K., Kidai, M., Takagi, T., Development of a High-performance Electrophoretic Light Scattering Apparatus for Mobility Determination of Particles with Their Stokes’ Radii of Several Nanometers, Appl. Theoretical Electrophoresis, 1990, 1, 273–278.

    CAS  Google Scholar 

  46. Knox, R. J., Burns, N. L., Van Alstine, J. M., Harris, J. M., Seaman, G. V. F., Automated Particle Electrophoresis: Modeling and Control of Adverse Chamber Surface Properties, Anal. Chem., 1998, 70, 2268–2279.

    Article  CAS  Google Scholar 

  47. Xu, R., Smart, G., Electrophoretic Mobility Study of Dodecyltrimethylammonium Bromide in Aqueous Solution and Adsorption on Microspheres, Langmuir, 1996, 12, 4125–4133.

    CAS  ISI  Google Scholar 

  48. Finsy, R., Xu, R., Deriemaeker, L., Effect of Laser Beam Dimension on Electrophoretic Mobility Measurements, Part. Part. Syst. Charact., 1994, 11, 375–378.

    Article  CAS  Google Scholar 

  49. Smith, B. A., Ware, B. R., Apparatus and Methods for Laser Doppler Electrophoresis, in Contemporary Topics in Analytical and Clinical Chemistry v.2, Eds. Hercules, D., Hieftje, M., Snyder, L. R., Evenson, M. A., Plenum, New York, 1978, Chpt. 2, p29–54.

    Google Scholar 

  50. Hjertén, S., High-performance Electrophoresis: Elimination of Electroendosmosis and Solute Adsorption, J. Chromatogr., 1985, 347, 191–198.

    Google Scholar 

  51. Schatzel, K., Weise, W., Sobotta, A., Drewel, M., Electroosmosis in an Oscillating Field: Avoiding Distortions in Measured Electrophoretic Mobilities. J. Colloid Interface Sci., 1991, 143, 287–293.

    Google Scholar 

  52. Minor, M., van der Linde, A. J., van Leeuwen, H. P., Lyklema, J., Dynamic Aspects of Electrophoresis and Electroosmosis: a New Fast Method for Measuring Particle Mobility, J. Colloid Interface Sci., 1997, 189, 370–375.

    Article  CAS  Google Scholar 

  53. Uzgiris, E. E., Laser Doppler Spectroscopy: Applications to Cell and Particle Electrophoresis, Adv. Coll. Inter. Sci., 1981, 14, 75–171.

    Article  Google Scholar 

  54. Uzgiris, E. E., Laser Doppler Methods in Electrophoresis, Prog. Surface Sci., 1981, 10, 53–164.

    CAS  Google Scholar 

  55. Miller, J., Velev, O., Wu, S. C. C., Ploehn, H. J., A Combined Instrument for Phase Analysis Light Scattering and Dielectric Spectroscopy, J. Colloid Interface Sci., 1995, 174, 490–499.

    Article  CAS  Google Scholar 

  56. Pohl, H. A., Dielectrophoresis, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  57. Kameyama, K., Takagi, T., Measurement of Electrophoretic Mobility of SDS Simple Micelles and mixed Micelles with a Non-ionic Surfactant, Octaethylene Glycol Dodecyl Ether, by Electrophoretic Light Scattering with the Correction for Electroosmotic Flow, J. Colloid Interface Sci., 1990, 140, 517–524.

    CAS  Google Scholar 

  58. Imae, T., Otani, W., Oka, K., Electrophoretic Light Scattering of Surfactant Micelle Colloids, J. Phys. Chem., 1990, 94, 853–855.

    CAS  Google Scholar 

  59. Seaman, G. V. F., Knox, R. J., Microparticles for Standardization of Electrophoretic Devices and Process Control, J. Dispersion Sci. Tech., 1998, 19, 915–936.

    Article  CAS  Google Scholar 

  60. Xu, R., Methods to Resolve Mobility from Electrophoretic Laser Light Scattering Measurement, Langmuir, 1993, 9, 2955–2962.

    CAS  ISI  Google Scholar 

  61. Davenport Jr., W. B., Root, W. L., Random Signals and Noise, McGraw-Hill, New York, 1958.

    Google Scholar 

  62. Kornbrekke, R. E., Morrison, I. D., Oja, T., Electrophoretic Mobility Measurements in Low Conductivity Media, Langmuir, 1992, 8, 1211–1217.

    Article  CAS  ISI  Google Scholar 

  63. Uzgiris, E. E., in Cell Electrophoresis, Eds. Preece, A., Sabolovic, D., Elsevier, Amsterdam, 1978, pp381.

    Google Scholar 

  64. Miller, J. F., The Determination of Very Small Electrophoretic Mobilities of Dispersions in Non-Polar Media Using Phase Analysis Light Scattering, Ph.D. Thesis, University of Bristol, Bristol, 1990.

    Google Scholar 

  65. Miller, J. F., Schatzal, K., Vincent, B., The Determination of Very Small Electrophoretic Mobilities in Polar and Nonpolar Colloidal Dispersions Using Phase Analysis Light Scattering, J. Colloid Interface Sci., 1991, 143, 532–553.

    Article  CAS  Google Scholar 

  66. Miller, J. F., Clifton, B. J., Benneyworth, P. R., Vincent, B., MacDonald, I. P., Marsh, J. F., Electrophoretic Studies of Calcium Carbonate Particles Dispersed in Various Hydrocarbon Liquids, Coll. Surf., 1992, 66, 197–202.

    CAS  Google Scholar 

  67. Tscharnuter, W. W., The Measurement of Zeta Potential, in Course Notes, Particle Characterization’ 97, Sydney, 1997.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Electrophoretic Light Scattering. In: Scarlett, B. (eds) Particle Characterization: Light Scattering Methods. Particle Technology Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/0-306-47124-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47124-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6300-2

  • Online ISBN: 978-0-306-47124-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics