Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

Seminal

  1. W. Nernst, Z. Physikal. Chem. 47:52 (1904).

    CAS  Google Scholar 

  2. J. Tafel, Z. Physikal. Chem. (Leipzig) 50:641 (1905).

    CAS  Google Scholar 

  3. J. A. V. Butler, Trans. Faraday Soc. 19:729 (1924).

    Google Scholar 

  4. T. Erdey Gruz and M. Volmer, Z. Physikal Chemie 203:250 (1930).

    Google Scholar 

Reviews

  1. J. O’M. Bockris, Chem. Rev. 3:525 (1948) (hydrogen oriented); Modem Aspects of Electrochemistry, Vol. 1, Ch. 4, Butterworths, London (1954). First comprehensive article on electrode kinetics as such.

    Google Scholar 

  2. K. J. Vetter, Electrode Kinetics, Springer-Verlag, Berlin (1961). First textbook on electrode kinetics.

    Google Scholar 

  3. B. E. Conway, Theory of Principles of Electrode Processes, Ronald Press, New York (1964).

    Google Scholar 

Further Reading

  1. A. N. Frumkin, Z. Physikal Chem. 164A:121 (1933). Effect of the double-layer structure on the concentration dependence of a reaction rate.

    Google Scholar 

  2. J. O’M. Bockris, I. A. Ammar, and A. K. M. S. Huq, J. Phys. Chem. 61:879 (1957). Effect of the double-layer structure on the potential dependence of the electrochemical reaction rate.

    Google Scholar 

Historical

  1. J. O’M. Bockris, “The Life of A. N. Frumkin,” Proc. RoyAustr. Chem. Inst. 19–21 (1971).

    Google Scholar 

Modern

  1. C. M. A. Brett and A. M. O. Brett, Electrochemistry, Oxford University Press, Oxford (1993).

    Google Scholar 

  2. C. H. Hamman, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley-VCH, Weinheim (1995).

    Google Scholar 

Elementary Phenomenological Electrode Kinetics

  1. J. O’M. Bockris, J. Chem. Ed. 48:352 (1971).

    Google Scholar 

  2. E. Gileadi, Electrode Kinetics for Chemists, Engineers and Material Scientists, VCH Publisher, Weinheim (1993).

    Google Scholar 

  3. W. Schmickler, Interfacial Electrochemistry, Ch. V, Oxford University Press, Oxford (1995).

    Google Scholar 

Further Reading Seminal

  1. H. Brattain and G. Garrett, Ann. N.Y. Acad. Sci. 58:951 (1954). First treatment (thermodynamic) of semiconductors as electrodes.

    CAS  Google Scholar 

  2. M. Green, “Electrochemistry of the Semiconductor Solution Interface,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, ed., Vol. II, Butterworths, London (1959). First kinetic treatment of electron transfer at semiconductor/solution interfaces.

    Google Scholar 

  3. H. Gerischer, “Semiconductor Electrode Reactions,” in Recent Advances in Electrochemistry, P. Delahay, ed., Interscience, New York (1961). Electrode kinetics involving conductivity and valence bands.

    Google Scholar 

  4. J. F. Dewald, “Semiconductor Electrodes,” in Semiconductors, H. B. Hannay, ed., Reinhold, New York (1964). First diagrammatic presentation of electron exchange between redox species in solution and semiconductor bands.

    Google Scholar 

Modern

  1. F. Gutmann, H. Keyzer, and L. E. Lyons, Organic Semiconductors, Part B, Malabar, FL (1983).

    Google Scholar 

  2. G. DiGiolomo, Electrochemical Migration, J. McHardy and F. Ludwig, eds., Noyes, Park Ridge, NJ (1992).

    Google Scholar 

  3. K. Uosaki and M. Koinuma, “STM and Semiconductor-Solution Interfaces,” Faraday Disc. 94:361 (1992).

    Article  CAS  Google Scholar 

  4. R. DeMattel and R. S. Feigelson, “Electrochemical Deposition of Semiconductors,” in Electrochemistry of Semiconductors, J. McHardy and F. Ludwig, eds., Noyes, Park Ridge, NJ (1992).

    Google Scholar 

  5. P. Allongue, in Advances in Electrochemical Science and Engineering, H. Gerischer and C. Tobias, eds., VCH Publishers, Weinheim (1995). STM on semiconductor electrodes.

    Google Scholar 

  6. W. Schmickler, Interfacial Electrochemistry, pp. 81–94, Oxford University Press, Oxford (1996).

    Google Scholar 

  7. W. Jaegerman, “Semiconductor Electrolyte Interface: A Surface Science Approach,” in Modem Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 30, Plenum, New York (1996).

    Google Scholar 

  8. C. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, pp. 207–208, VCH-Wiley, New York (1998).

    Google Scholar 

Further Reading Seminal

  1. F. Haber, Z. Elektrochemie 7: 13 (1900). Luggin capillary as a means to avoid IR errors.

    CAS  Google Scholar 

  2. W. Nernst, Z. Elektrochemie 7: 253 (1900). Hydrogen reference electrode.

    CAS  Google Scholar 

  3. F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. 120A: 59, 80 (1928). First measurements of “real” areas.

    Google Scholar 

  4. S. Levina and W. Silberfarb, Acta Physicochim. USSR 4: 282 (1936). First cells aimed at steady-state pure solution measurements.

    Google Scholar 

  5. S. Levina and W. Sarinsky, Acta Physicochim. USSR 6: 491 (1937). Clean solutions, preelectrolysis.

    CAS  Google Scholar 

  6. A. Hickling, Trans. Faraday Soc. 33: 1540 (1937). The first paper on electronic potentiostats.

    Article  CAS  Google Scholar 

  7. F. P. Bowden and J. Grew, Discuss. Faraday Soc. 1: 91(1947). Measurements at very low current densities, 10 nA cm −2.

    Google Scholar 

  8. J. O’M. Bockris and B. E. Conway, J. Sci. Instrum. 19A: 23 (1948). Preparation of electrodes in a hydrogen flame.

    Google Scholar 

  9. J. O’M. Bockris and B. E. Conway, Trans. Faraday Soc. 45: 989 (1949). Effects of trace impurities in solution.

    Google Scholar 

  10. A. M. Azzam, J. O’M. Bockris, B. E. Conway, and H. Rosenberg, Trans. Faraday Soc. 46:918 (1950). Technique of steady-state electrode kinetics on solid electrodes involving intermediates.

    Article  CAS  Google Scholar 

  11. C. Wagner, J. Electrochem. Soc. 98: 116 (1951). Resistance and current lines in solution.

    CAS  Google Scholar 

  12. S. Schuldiner, J. Electrochem. Soc.’ 99: 488 (1952). Clean cells made of Teflon.

    CAS  Google Scholar 

  13. J. Barton and J. O’M. Bockris, Proc. Roy. Soc. London A268: 485 (1962). Spherical diffusion control experimentally established.

    Google Scholar 

  14. E. Schmidt and H. R. Gygax, Chimia 16:105 (1962). The first, but primitive, thin-layer cell.

    CAS  Google Scholar 

  15. C. C. Christensen and F. C. Anson, Anal. Chem. 35: 205 (1963). The first real thin-layer cell.

    Article  CAS  Google Scholar 

  16. H. Angerstein-Kozlowska, in Comprehensive Treatise of Electrochemistry, E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, eds., Vol. 9, p. 15, Plenum, New York (1985).

    Google Scholar 

Reviews

  1. R. Varma and J. R. Selman, Techniques for Electrodes, Wiley, New York (1991).

    Google Scholar 

  2. D. Genders and N. Weinberg, Electrochemistry for a Cleaner Environment, Electrosynthesis Co., Buffalo, NY (1992).

    Google Scholar 

  3. B. R. Scharifker, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 5, p. 467, Plenum, New York (1992). Microelectrodes.

    Google Scholar 

  4. R. J. Gale, in Electrochemistry, 1992–95. Royal Society of Chemistry, London (1996). Instrumentation.

    Google Scholar 

  5. J. Bemhofer, Pract. Spectroscopy 15: 233 (1993). Cells for optical measurements.

    Google Scholar 

  6. P. A. Christensen and A. Hamnett, Techniques and Mechanisms of Electrochemistry, Blackie Academic and Professional, London (1994).

    Google Scholar 

  7. R. C. Salvarazza and A. J. Arvia, in Modem Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris and R. E. White, eds., Vol. 28, Ch. 5, Plenum, New York (1996). Roughness measurement.

    Google Scholar 

  8. M. E. Clark, J. L. Ingram, E. E. Blakely, and W. T. Bowes, J. Electroanal. Chem. 385: 105 (1995). Miniature cells for Tafel measurements.

    Article  Google Scholar 

  9. Z. Li and X. Lin, J. Electroanal. Chem. 386: 83 (1995). Cells for infrared measurements.

    Article  CAS  Google Scholar 

  10. R. T. Baker, I. S. Metalfe, and P. H. Middleton, J. Catal. 155: 21 (1995). Cells coupled to mass spectrographs.

    Article  CAS  Google Scholar 

  11. Y. Iwasaki and M. Moritz, Curr. Sep. 14: 2 (1995). Arrays of microelectrodes.

    CAS  Google Scholar 

Further Reading Seminal

  1. J. Tafel, Z. Physikal. Chem. 50:641 (1905). First experiment indicating that current density depends on the exponential value of the overpotential.

    CAS  Google Scholar 

  2. F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. London 120A: 59 (1928). First real area measurements, first transients.

    Google Scholar 

  3. P. Bakendale, Discuss. Faraday Soc. 1: 46 (1947). Rational interpretation of meaning of temperature coefficients.

    Google Scholar 

  4. M. Temkin, Zhur. Fiz. Khim. 15: 296 (1941). Analysis of heats of activation.

    CAS  Google Scholar 

  5. G. J. Hills and D. R. Kinnibrugh, J. Electrochem. Soc. 113:1111 (1960). Rate as a function of pressure.

    Google Scholar 

  6. Y. R. Ivanov and V. C. Levich, Dokl. Akad. Nauk., SSSR 126: 1029 (1959). First theory, rotating disk with ring.

    CAS  Google Scholar 

  7. A. N. Frumkin and L. N. Nekrassov, Dokl. Akad. Nauk., SSSR 126:115 (1959). First use, rotating disk with ring.

    Google Scholar 

  8. P. Dolin and B. Erschler, Acta Phys. Chem. 13: 747 (1940). First use, equivalent circuit, in electrode kinetics.

    CAS  Google Scholar 

  9. J. C. B. Randies, Discuss. Faraday Soc. 1:11 (1947). A simple derivation of the exchange current density from impedance measurements.

    Google Scholar 

  10. M. Neugebauer, G. Nauer, N. Brinda-Knopik, and G. Gidaly, J. Electroanal. Chem. 122: 237 (1981). First Fourier transform infrared spectra on electrodes.

    Article  Google Scholar 

  11. A. K. N. Reddy, M. A. U. Devanathan, and J. O’M. Bockris, J. Electroanal. Chem. 6: 61 (1963). First use of ellipsometry to follow a dynamic electrode process.

    CAS  Google Scholar 

  12. W. K. Paik and J. O’M. Bockris, Surf. Sci. 18:61 (1971). First exact ellipsometric solutions in one measurement.

    Google Scholar 

  13. S. G. Christov, Electrochim. Acta 4: 306 (1961). Separation factors analysis in electrode kinetics.

    Google Scholar 

  14. J. O’M. Bockris, D. G. M. Matthews, and S. Srinivasan, Discuss. Faraday Soc. 39: 329 (1965). Use of quantum theory-derived values of separation factors in mechanism analysis for hydrogen evolution.

    Google Scholar 

  15. R. Sonnenfeld and P. K. Hansma, Science 232: 211 (1986). First use of STM in electrochemistry.

    CAS  Google Scholar 

  16. M. Szklarczyk and J. O’M. Bockris, J. Electrochem. Soc. 137: 452 (1990). First STM report of distinguishability of atoms on surface in contact with liquid.

    CAS  Google Scholar 

  17. S. W. Feldburg, in Analytical Chemistry, A. J. Bard, ed., Vol. 3, p. 199; (1969). First application of explicit finite-difference method to electrochemistry.

    Google Scholar 

  18. M. Szklarczyk, O. Velev, and J. O’M. Bockris, J. Electrochem. Soc. 136: 2433 (1989). First atomic resolution in in situ electrochemistry.

    CAS  Google Scholar 

Papers

  1. Z. Nagy, “D. C. Relaxation Techniques in Electrode Kinetics,” in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 137, Plenum, New York (1990).

    Google Scholar 

  2. R. Sonnenfeld, J. Schnei, and P. Hansma, “Scanning Tunneling Spectroscopy—A Natural for Electrochemistry,” in Modern Aspects of Electrochemistry, R. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 1, Plenum, New York (1990).

    Google Scholar 

  3. H. D. Abruna, “X-rays as Probes of the Electrochemical Interface,” in ModernAspects of Electrochemistry, J. O’M. Bockris, R. E. White, and B. E. Conway, eds., Vol. 20, p. 205, Plenum, New York (1989).

    Google Scholar 

  4. R. Adzic, “Reaction Kinetics on Single Crystals,” in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 163, Plenum, New York (1990).

    Google Scholar 

  5. T. Z. Fahidy and Z. H. Gu, “Dynamics of Electrode Processes,” in Modern Aspects of Electrochemistry, R. E. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 27, p. 383, Plenum, New York (1995).

    Google Scholar 

  6. D. B. Sepa, “Energies of Activation,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 29, p. 1, Plenum, New York (1997).

    Google Scholar 

  7. V. Jovancicevic and J. O’M. Bockris, “Pressure Dependence of Reaction Rate,” Rev. Sci. Inst. 58:1251(1987).

    CAS  Google Scholar 

  8. R. J. Nichols, “IR Spectroscopy at the Solid-Solution Interface,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., VCH Publishers, Weinheim (1992).

    Google Scholar 

  9. W. K. Paik, “Ellipsometry in Electrochemistry,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 25, p. 191, Plenum, New York (1993).

    Google Scholar 

  10. P. A. Christensen and A. Hamnett, Techniques and Mechanisms in Electrochemistry, in Particular Impedance, pp. 154–168, Blackie, London (1994).

    Google Scholar 

  11. C. M. A. Brett and A. M. D. Brett, Electrochemistry, pp. 156–189, Oxford University Press, Oxford (1993).

    Google Scholar 

  12. Techniques for the Characterization of Electrodes and Electrode Processes, R. Varma and J. R. Selman, eds., Wiley, New York (1994).

    Google Scholar 

  13. Physical Electrochemistry, I. Robinstein, ed., Marcel Dekker, New York (1995).

    Google Scholar 

  14. T. Iwasite and F. C. Nart, “FTIR,” inAdvances in Electrochemical Science and Engineering, C. W. Tobias and H. Gerischer, eds., Vol. 4, p. 123, Interscience, New York (1990).

    Google Scholar 

  15. W. Plieth, W. Kozlowski, and T. Twomey, “Ellipsometry of Organic Layers,” in Adsorption of Molecules on Metals, J. Lipkowski and P. N. Ross, eds., p. 1, VCH Publishers, Weinheim (1992).

    Google Scholar 

  16. A. Aramata, “On Single Crystal Techniques in Electrode Kinetics,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, R. E. White, and B. E. Conway, eds., Vol. 31, p. 181, Plenum, New York (1997).

    Google Scholar 

  17. M. Makri, G. C. Vayenas, S. Bebelis, K. H. Besocke, and C. Cavalca, “Atomic Resolution Solution by STM,” Surf. Sci. 369:351 (1996).

    Article  CAS  Google Scholar 

  18. G. Wu and D. Baikey, “Atomic Force Microscopy Study of Cu Deposition in Motion,” J. Electrochem. Soc. 144:2261 (1997).

    Google Scholar 

  19. K. Chandrasekaran and J. O’M. Bockris, “In Situ Spectroscopic Study of Intermediates in an Electrochemical Reaction,” Surf. Sci. 185:495 (1987).

    CAS  Google Scholar 

  20. A. Szucs, D. Kitchens, and J. O’M. Bockris, “Ellipsometric Study of Di-pyridyl on Au,” Electrochim. Acta 37:403 (1992).

    Article  CAS  Google Scholar 

  21. G. S. Popkirov and S. Ottow, 0147In Situ Impedance Spectroscopy of Electrochemical Si Formation,” J. Electroanal. Chem. 429:47 (1997).

    Article  CAS  Google Scholar 

  22. J. F. Aebersold and D. A. Stadelmann, “Rotating Disc Techniques,” Ultramicroscopy, 62:157(1996).

    CAS  Google Scholar 

Further Reading Seminal

  1. R. Parsons, Trans. Faraday Soc. 147: 1332 (1951). General scheme for current-potential relations and mechanism determination.

    Google Scholar 

  2. E. C. Potter, J. Chem. Phys. 20: 614 (1952). Use of the stoichiometric number.

    Google Scholar 

  3. K. J. Vetter, Electrochemical Kinetics, Ch. 3, on electrochemical reaction orders, Academic Press, New York (1967).

    Google Scholar 

Papers

  1. J. O’M. Bockris, J. Chem. Ed. 50: 839 (1973).

    Google Scholar 

  2. I. Taniguchi, in Modern Aspects of Electrochemistry, J. O’M. Bockris, R. White, and B. E. Conway, eds., Vol. 20, p. 137, Plenum, New York (1989). Mechanism in the reduction of CO 2

    Google Scholar 

  3. L. M. Vracar and D. M. Drazic, J. Electroanal. Chem. 265: 171 (1989). More knowledge from current potential curves.

    Article  CAS  Google Scholar 

  4. P. Nowak and W. Vielstich, J. Electrochem. Soc. 137: 1036 (1990). Polymerization reactions.

    Google Scholar 

  5. A. Zagiel, P. Natashan, and E. Gileadi, Electrochim. Acta 35: 1019 (1990). Complex mechanisms.

    Article  CAS  Google Scholar 

  6. T. Z. Fahidy and Z. H. Gu, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 27, p. 383, Plenum, New York (1995). Dynamics of electrode processes.

    Google Scholar 

  7. M. M. Scherer, J. C. Westall, M. Ziomek-Moroz, and P. G. Tratnyek, Environ. Sci. Technol. 31: 2385 (1997). Kinetics of carbon tetrachloride reduction.

    Article  CAS  Google Scholar 

  8. T. Frelink, W. Visscher, A. P. Cox, and J. A. R. van Veen, Ber. Gunsenges Phys. Chem. 100:599 (1996). The role of surface oxides.

    CAS  Google Scholar 

  9. R. Adzic, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 163, Plenum, New York (1990). Reaction kinetics on metal single-crystal electrode surfaces.

    Google Scholar 

Further Reading Seminal

  1. A. N. Frumkin, Z. Physik. 35: 792 (1926).

    Article  CAS  Google Scholar 

  2. M. Temkin, Acta Physicachim. URSS, 12: 327 (1940).

    CAS  Google Scholar 

  3. E. Gileadi and B. E. Conway, in Modern Aspects of Electrochemistry, J. O’M. Bockris, and B. E. Conway, eds., Vol. 3, p. 347, Plenum, New York (1964).

    Google Scholar 

Modern

  1. C. M. A. Brett and A. M. O. Brett, Electrochemistry, p. 55, Oxford Science Publications, Oxford University Press, Oxford (1993).

    Google Scholar 

  2. F. A. Christensen and A. Hamnett, Techniques and Mechanism in Electrochemistry, p. 10, Blackie, London (1993).

    Google Scholar 

  3. E. Gileadi, Electrode Kinetics for Chemists, Engineers and Materials Scientists, pp. 266–271, VCH Publishers, Weinheim (1993).

    Google Scholar 

  4. C. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, VCH Publishers, Weinheim (1998) (particularly Chapter 6).

    Google Scholar 

Further Reading Seminal

  1. A. Damjanovic, T. H. V. Setty, and J. O’M. Bockris, J. Electrochem. Soc. 113: 429 (1960).

    Google Scholar 

  2. H. Seither, H. Fischer, and L. Albert, Electrochim. Acta 2: 97 (1960).

    Google Scholar 

  3. R. Piontelli, G. Poli, and G. Serrevalle, in Transactions of the Symposium on Electrode Processes, E. Yeager, ed., p. 245, Wiley, New York (1961).

    Google Scholar 

Modern

  1. J. Clavillier, R. Faure, G. Guinet, and R. Durand, J. Electroanal. Chem. 107: 205 (1980).

    Google Scholar 

  2. A. Hamlin, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 16, p. 1, Plenum, New York (1985).

    Google Scholar 

  3. K. Adzic, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 21, p. 188, Plenum, New York (1990).

    Google Scholar 

  4. H. Gasteiger, N. Markovic, P. N. Ross, and C. J. Cairns, J. Phys. Chem. 97: 12020 (1993).

    Article  CAS  Google Scholar 

  5. H. A. Gasteiger, N. Markovic, P. N. Ross, and C. J. Cairns, J. Electrochem. Soc. 141: 1795 (1994).

    CAS  Google Scholar 

  6. T. Fukudu and A. Aramato, Electrochem. Soc. Proc. 96–8:96 (1996).

    Google Scholar 

  7. H. You, Z. Nagy, D. J. Zurowski, and R. P. Chierello, Electrochem. Soc. Proc. 96–8: 136 (1996).

    Google Scholar 

  8. C. Stuhlmann, B. Wohlmann, M. Kruft, and K. Wandelt, Electrochem. Soc. Proc. 96–8:203 (1996).

    Google Scholar 

Further Reading Seminal

  1. A. E. Fick, Pogg. Ann. 94: 59 (1855). The first paper relating current density to diffusion.

    Google Scholar 

  2. H. J. S. Sand, Phil. Mag. 1: 45 (1900). The transition time at constant current, diffusion control.

    Google Scholar 

  3. F. C. Cottrell, Z. Physikal. Chem. (Leipzig) 42: 358 (1903). Time dependence of current under diffusion control at constant potential.

    Google Scholar 

  4. T. R. Rosebrugh and W. L. Miller, J. Phys. Chem. 14: 816 (1910). Generalization of current as a function of time—particularly under periodic function of time.

    Article  Google Scholar 

  5. D. Ilkovic, Coll. Czech. Chem. Comm. 6: 495 (1934).

    Google Scholar 

  6. V. G. Levich, Acta Physicochem. URSS 17: 252 (1942). Early paper in applying hydrodynamic theory to electrochemistry.

    Google Scholar 

  7. J. N. Agar, Discuss. Faraday Soc. 1:26 (1947). First paper on dimensional analysis applied to electrochemical equations.

    Google Scholar 

  8. C. Wagner, J. Electrochem. Soc. 95: 161 (1949). Calculation of current at vertical electrodes with natural convection.

    CAS  Google Scholar 

  9. C. R. Wilke, M. Eisenberg, and C. W. Tobias, J. Electrochem. Soc. 100: 513 (1953). Hydrodynamic factors and the limiting current.

    CAS  Google Scholar 

  10. W. Vielstich, Z. Elektrochemie 57: 646 (1953). Diffusion layer related to hydrodynamic boundary layer.

    CAS  Google Scholar 

  11. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962). The classic text in the field.

    Google Scholar 

Modern

  1. P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York (1952). Contains much seminal work showing the evolution away from the pure diffusion control and the introduction of “activation” overpotential, i.e., interfacial control.

    Google Scholar 

  2. A. C. Riddiford, “Rotating Disc Systems,” in Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. IV, Ch. 2, Interscience, New York (1966).

    Google Scholar 

  3. N. Ibl, “Fundamentals of Transport,” in Comprehensive Treatise in Electrochemistry, E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, eds., Vol. 6, p. 133, Plenum, New York (1987).

    Google Scholar 

  4. C. M. Brett and A. M. A. Brett, Electrochemistry, Ch. 8 (hydrodynamics), Oxford University Press, Oxford (1993).

    Google Scholar 

  5. Keith R. Oldham and Jan C. Myland, Fundamentals of Electrochemical Science, Ch. 7, (transport), Academic Press, San Diego (1994).

    Google Scholar 

  6. A. Bard and B. Faulkner, Electrochemical Methods, 2nd ed., Interscience, New York (1998). A classic text oriented to transport and its role in electroanalytical chemistry.

    Google Scholar 

Further Reading Seminal

  1. R. Parsons, Trans. Faraday Soc. 47: 1332 (1951). General scheme for mechanism determination.

    CAS  Google Scholar 

  2. M. C. Davies, M. Clark, E. Yeager, and F. Hovorka, J. Electrochem. Soc. 106: 56 (1959). Mechanism of H 2 O 2 formation.

    CAS  Google Scholar 

  3. V. S. Bagotskii and Y. B. Vasiliev, Electrochim. Acta 12: 1323 (1967). Mechanism of methanol oxidation.

    CAS  Google Scholar 

  4. S. Gilmore, J. Phys. Chem. 67: 78 (1963). Mechanism of CO oxidation.

    Google Scholar 

  5. A. T. Kühn, H. Wroblowa, and J. O’M. Bockris, Trans. Faraday Soc. 63: 1458 (1967). Mechanics of the oxidation of ethylene.

    Google Scholar 

  6. E. Gileadi and L. Duic, Electrochim. Acta 13: 1915 (1968). Mechanism of the oxidation of benzene.

    Article  CAS  Google Scholar 

Modern

  1. S. Kunimatsu and H. Kita, J. Electroanal. Chem. 149: 2113 (1986).

    Google Scholar 

  2. E. P. Soponeva, S. Hotchandani, B. A. Kisselev, and C. Arbour, J. Electroanal. Chem. 387: 123 (1995).

    Google Scholar 

  3. S. I. Mho, B. Ortiz, N. Doddepeneni, and S. M. Paik, J. Electrochem. Soc. 142:1047 (1995).

    CAS  Google Scholar 

  4. M. P. Doherty, P. A. Christensen, A. Hamnett, and K. Scott, J. Electroanal Chem. 385: 39 (1995).

    Google Scholar 

  5. K. M. Robertson and W. O’Grady, J. Electroanal. Chem. 384: 139 (1995).

    Google Scholar 

  6. H. G. Hambold and X. H. Wang, Nucl. Instrumen. Meth. Phys. Rev., Sec. B 97: 50 (1995).

    Google Scholar 

  7. A. K. Jonscher, J. Mater. Sci. 30: 2491 (1995).

    CAS  Google Scholar 

  8. J. M. Tatiobouet, Appl. Catalysis A. General, 148: 213 (1997).

    Google Scholar 

  9. K. Wang, H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Electrochim. Acta 41: 2587 (1996).

    CAS  Google Scholar 

  10. A. V. Tripkovic and K. D. Popovic, Electrochim. Acta 41: 2385 (1996).

    Article  CAS  Google Scholar 

  11. W. T. Nappory, H. Laborde, J. M. Leger, and C. Lamy, J. Electroanal. Chem. 404: 153 (1996).

    Google Scholar 

  12. A. S. Areco, M. K. Ravikumar, A. K. Schukla, C. Candieno, V. Antenucci, N. Giordano, and A. Hamnett, J. Appl. Electrochem. 25: 528 (1995).

    Google Scholar 

  13. T. Feelink, W. Vischer, A. P. Cox, and T. A. R. Van Veen, Ber. Buns. Phys. Chem. 100: 599 (1996).

    Google Scholar 

  14. J. W. Schulze and D. Rolle, Canad. J. Chem. 75: 1750 (1997).

    Google Scholar 

  15. M. Osawa, K. Yoshi, K. Ataka, and T. Yotsuyanaga, Langmuir 10: 640 (1994). Submillisecond FTIR.

    Article  CAS  Google Scholar 

Further Reading Seminal

  1. F. P. Bowden and E. K. Rideal, Proc. Roy. Soc. London 120A: 59 (1928). First paper to compare electrode kinetics of H 2 evolution on various substrates.

    Google Scholar 

  2. J. Horiuti and M. Polanyi, Acta Physicochem. URSS 2: 505 (1935). First theory of electrocatalysis.

    Google Scholar 

  3. B. E. Conway and J. O’M. Bockris, J. Chem. Phys. 26: 532 (1957). Hydrogen evolution catalysts in two groups rationalized.

    Article  CAS  Google Scholar 

  4. W. T. Grubb, U.S. Patent 2, 913, 511, 1959.

    Google Scholar 

  5. A. Damjanovic, A. Dey, and J. O’M. Bockris, J. Catalysis 4: 721 (1965). Catalytic surface of Pt-Rh alloy in solution.

    Article  CAS  Google Scholar 

  6. A. Damjanovic, V. Brusic, and J. O’M. Bockris, J. Phys. Chem. 71: 2741 (1967). Catalysis of electrochemical O 2 reduction, related to electronic structure of Au/Pd alloys.

    Article  CAS  Google Scholar 

  7. J. O’M. Bockris and S. U. M. Kahn, Surface Electrochemistry, pp. 292–294, Plenum, New York, 1993. Theory of volcano relations in electrochemical reactions.

    Google Scholar 

  8. J. O’M. Bockris, R. Mannan, and A. Damjanovic, J. Chem. Phys. 48: 1989 (1968). Electrocatalysis and the electronic work function.

    Google Scholar 

Modern

  1. F. C. Anson, C. L. Ni and J. M. Saveant, J. Am. Chem. Soc. 107: 3442 (1982).

    Google Scholar 

  2. A. J. Appleby, in Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O’M. Bockris, E. Yeager, S. U. M. Khan, and R. E. White, eds., Vol. 7, p. ? Plenum, New York (1983).

    Google Scholar 

  3. J. O’M. Bockris and T. Ottagaewa, J. Phys. Chem. 87: 2960 (1983).

    Google Scholar 

  4. Y. B. Vasiliev, V. S. Bagotski, and V. A. Gromyko, J. Electroanal. Chem. 176: 247 (1984).

    Google Scholar 

  5. M. S. Taresevitch, J. Electroanal. Chem. 206: 217 (1986).

    Google Scholar 

  6. A. Hamlin, Trends in Electrochemistry, NATO AS1 Series, Vol. 179, p. 19, Reidel, Dordrecht, The Netherlands (1986).

    Google Scholar 

  7. M. E. G. Lyons, Ann. Rep. Chem. Soc. 87: 119 (1990).

    CAS  Google Scholar 

  8. R. Adzic, in Modern Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris, and R. E. White, eds., Vol. 21, p. 1, Plenum, New York (1990).

    Google Scholar 

  9. V. S. Bagotski, Y. B. Vasiliev, and V. A. Grinbergi, J. Electroanal. Chem. 283: 359 (1990).

    Google Scholar 

  10. C. Quijada, J. L. Vasquez, and A. Aldez, J. Electroanal. Chem. 414: 229 (1990).

    Google Scholar 

  11. H. Kita, S. Ye, and K. Sagimuri, J. Electroanal. Chem. 297: 283 (1991).

    Article  CAS  Google Scholar 

  12. B. E. Conway and T. Tilak, Advances in Catalysis 38: 1 (1992). Major review.

    CAS  Google Scholar 

  13. S. J. Dong, Electrochim. Acta 40: 2785 (1995).

    Google Scholar 

  14. O. A. Petrii, C. Y. Vasina, and Y. D. Seropagin, Russ. J. Electrochem. 31: 1274 (1995).

    CAS  Google Scholar 

  15. G. Jerkiewicz and A. Zolfaghari, J. Phys. Chem. 100: 8454 (1996).

    Article  CAS  Google Scholar 

  16. H. Y. Chen, D. M. Zhou, J. J. Xu, and H. Q. Fang, J. Electroanal. Chem. 422: 21 (1997).

    Article  CAS  Google Scholar 

  17. J. Stepp and J. B. Schlenoff, J. Electrochem. Soc. 144: 155 (1997).

    Google Scholar 

  18. J. O’M. Bockris and R. Abdu, J. Electroanal. Chem. 448: 189 (1998).

    Google Scholar 

Seminal

  1. F. Kuhlschutter and J. Torricelli, Z. Elektrochem. 38: 213 (1932). Photography of moving layers in electrogrowth.

    Google Scholar 

  2. C. Burton, F. Cabrera, and C. Frank, Nature 163: 398 (1949). Nucleation unnecessary; crystal growth can occur by rotation of spirals originating in screw dislocations.

    CAS  Google Scholar 

  3. R. Kaischew, Bull. Acad. Bulg, Sci. Phys. 1: 100 (1950). Theory of 2D nucleation.

    Google Scholar 

  4. R. Kaischew, E. Budevski, and J. Malinowski, Z. Physikal. Chem. 204: 348 (1955). Nucleation rate.

    Google Scholar 

  5. C. Vermilyeo, J. Chem. Phys. 28: 1254 (1956). Screw dislocation theory: kinetics of rotation.

    Google Scholar 

  6. O. Kardos and O. Foulke, American Electroplaters 43: 172 (1956). Mechanistic theory of leveling agents.

    Google Scholar 

  7. B. E. Conway and J. O’M. Bockris, Proc. Roy. Soc. London 248A: 394 (1958). Calculations on competing steps in electrochemical metal deposition.

    Google Scholar 

  8. M. Fleischmann and R. Thirsk, Electrochim. Acta 2: 22 (1960). Potentiostatic transient and crystal growth.

    Article  CAS  Google Scholar 

  9. J. O’M. Bockris and J. Barton, Proc. Roy. Soc. London 268A: 485 (1962). Quantitative theory of dendritic growth.

    Google Scholar 

  10. M. Mullins and P. Hirth, J. Phys. Chem. Solids 24: 1391 (1963). Bunching theory.

    Article  CAS  Google Scholar 

Monograph

  1. E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Crystal Growth, VCH Publishers, Weinheim (1996).

    Google Scholar 

Modern

  1. E. Budevski, in Progress in Surface Science, Vol. II, p. 71, Academic Press, New York (1976).

    Google Scholar 

  2. E. Budevski, V. Bortanou, and G. Starkov, Ann. Rev. Mat. Sci. 10: 15 (1980).

    Article  Google Scholar 

  3. S. Sweshirajen and S. Bruckenstein, J. Electrochem. Soc. 129: 1202 (1982).

    Google Scholar 

  4. B. Scharifker and G. J. Wills, Electrochim. Acta 28: 879 (1983).

    Article  CAS  Google Scholar 

  5. E. Budevski, in Comprehensive Treatise in Electrochemistry, B. E. Conway, J. O’M. Bockris, E. Yeager, S. U. M. Khan, and R. E. White, eds., p. 399, Plenum, New York (1983).

    Google Scholar 

  6. Blum H. D. Abruna, J. G. Gordon, G. l. Borges, M. G. Samant, and O. R. Melroy, J. Chem. Phys. 85: 6732 (1986).

    Google Scholar 

  7. M. Szklarczyk, O. Velev, and J. O’M. Bockris, J. Electrochem. Soc. 136: 2433 (1989).

    CAS  Google Scholar 

  8. R. Sonnenfeld, J. Schneir, and D. K. Hansma, in Modern Aspects of Electrochemistry, 9. R. E. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 21, p. 1, Plenum, New York (1990).

    Google Scholar 

  9. C. Kolla, N. Spyrellis, J. Amplard, M. Fromnent, and G. Maurin, J. Appl. Electrochem. 20: 1241 (1990).

    Google Scholar 

  10. N. Battina, T. Will, and D. M. Kolb, Faraday Discuss. 94: 93 (1992). G. Staynor, Electrochim. Acta 37: 2357 (1992).

    Google Scholar 

  11. W. Obretenov, U. Schmidt, W. J. Lorenz, G. Staikov, E. Budevski, D. Carnal, U. Muller, H. Siegenthaler, and E. Schmidt, J. Electrochem. Soc. 140: 692 (1993).

    CAS  Google Scholar 

  12. S. G. Corcoran, G. S. Chakovova, and K. Siradski, Phys. Rev. Lett. 71: 1588 (1993).

    Article  Google Scholar 

  13. V. Battina, A. S. Dakkouri and D. M. Kolb, J. Electroanal. Chem. 370: 370 (1994).

    Google Scholar 

  14. M. Ditterlie, T. Will, and D. M. Kolb, Surface Sci. 327: L495 (1995).

    Google Scholar 

  15. M. H. Holzle, V. Zwing, and D. M. Kolb, Electrochim. Acta 40: 1237 (1995).

    Article  Google Scholar 

  16. P. Mrazek, Y. E. Sung, M. Han, M. Gamboa-Aldeco, A. Wieckowski, C. Chen, and A. Gewirth, Electrochim. Acta 40: 17 (1995).

    Google Scholar 

  17. K. Ogaki and K. Itaya, Electrochim. Acta 40: 1249 (1995).

    Article  CAS  Google Scholar 

  18. U. Schmidt, S. Vinzelberg, and G. Staikov, Surf. Sci. 335: 32 (1995).

    Article  Google Scholar 

  19. W. J. Lorenz and G. Staikov, Surf. Sci. 335: 32 (1995).

    Article  CAS  Google Scholar 

  20. R. T. Porzschke, G. A. Gervasi, S. Vinzelberg, G. Staikov, and W. J. Lorenz, Electrochim. Acta 40: 1469 (1995).

    Google Scholar 

  21. T. Leava and W. Schmickler, Electrochim. Acta 40: 37 (1995).

    Google Scholar 

  22. Z. Shi, S. Wu, and J. Lipkowski, Electrochim. Acta 40: 9 (1995).

    CAS  Google Scholar 

  23. W. J. Lorenz and G. Staikov, Surf. Sci. 335: 32 (1995).

    Article  CAS  Google Scholar 

  24. R. T. Potschke, G. A. Gervasi, S. Vinzelberg, G. Staikov, and D. W. Lorenz, Electrochim. Acta 40: 1469 (1995).

    Google Scholar 

  25. A. R. Despic and D. D. Jovic, in Modern Aspects of Electrochemistry, B. E. Conway, J. O’M. Bockris, and R. E. White, eds., Vol. 27, p. 143, Plenum, New York (1995).

    Google Scholar 

  26. G. Jerkiewicz and A. Zolfaghari, J. Phys. Chem. 100: 8454 (1996).

    Article  CAS  Google Scholar 

  27. N. M. Markovic, H. A. Gesteiger, Chris A. Lucas, I. M. Tidswell, and P. Ross, Surf. Sci. 335: 91 (1995).

    Article  CAS  Google Scholar 

  28. K. Shashikata, Y. Matsui, K. Itaya, and M. P. Soriaga, J. Phys. Chem. 100: 20027 (1996).

    Google Scholar 

Further Reading Seminal

  1. C. Wagner, “Electrolytic Transport of Ions Through Solids,” Adv. Catalysis 21: 323 (1970).

    CAS  Google Scholar 

  2. C. G. Vayenas and H. M. Saltzburg, “Electrochemical Promotion of Chemical Catalysis,” J. Catal. 57: 296 (1979).

    Article  CAS  Google Scholar 

  3. J. Pritchard, “Chemical Catalysts, Electrochemically Caused,” Nature 343: 592 (1990).

    Article  Google Scholar 

Review

  1. C. G. Vayenas, M. M. Jaksic, S. I. Bebelis, and S. G. Neophytides, “The Electrochemical Activation of Catalytic Reactions,” in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 29, p. 57, Plenum, New York (1996).

    Google Scholar 

Further Reading

  1. Dong-Hyun Kim, Koji Aoki, and O. Takano, J. Electrochem. Soc. 142: 3763 (1995).

    CAS  Google Scholar 

  2. Melvin De Silva and Y. Schachem-Diamond, J. Electrochem. Soc. 143: 3513 (1996).

    Google Scholar 

  3. S. Armyanov, R. Winand, and J. Vereeken, J. Electrochem. Soc. 143: 3092 (1996).

    Google Scholar 

  4. J. Ghorogchian and J. O’M. Bockris, Int. J. Hydrogen Energy 10: 101 (1984).

    Google Scholar 

Further Reading Review

  • See earlier papers reviewed by J. Wojtowicz, in Modem Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Vol. 8, p.47, Plenum, New York (1972).

    Google Scholar 

Papers

  1. B. J. Hwang and S. H. Lin, J. Electrochem. Soc. 142: 3749 (1995).

    CAS  Google Scholar 

  2. B. Bush and J. Newman, J. Electrochem. Soc. 142: 3771 (1995).

    Google Scholar 

  3. S. Nakabayashi, K. Zama, and K. Uosaki, J. Electrochem. Soc. 143: 2258 (1996).

    CAS  Google Scholar 

  4. C. W. Kim, I. H. Yeo, and W. K. Paik, Electrochim. Acta 18: 2829 (1996).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Electrodics. In: Modern Electrochemistry 2A. Springer, Boston, MA. https://doi.org/10.1007/0-306-47605-3_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47605-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46166-8

  • Online ISBN: 978-0-306-47605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics