Skip to main content
  • 245 Accesses

Abstract

The ability to accumulate large numbers of positrons in Penning traps and to manipulate them using nonneutral plasma techniques offers a completely new approach to creating high quality positron beams. This approach provides significant advantages over conventional positron beam technology with regard to beam brightness, flux, and system cost. The application of these techniques has already resulted in a new generation of bright, ultracold positron beams with state-of-the-art performance. These beams are currently being exploited in the area of atomic physics studies, but they also have the potential for uses in other areas of science and technology, such as materials science. The current status of trap-based positron beams is described and the potential for further development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

    Article  ADS  Google Scholar 

  2. W. E. Kauppila and T. S. Stein, Adv. in Atomic, Molec. Opt. Phys. 26, 1 (1990).

    Google Scholar 

  3. R. G. Greaves and C. M. Surko, Phys. Plasmas 4, 1528 (1997).

    Article  ADS  Google Scholar 

  4. L. D. Hulett, Jr. et al., Chem. Phys. Lett. 216, 236 (1993).

    Article  ADS  Google Scholar 

  5. A. P. Mills, Jr., Exp. Methods in the Phys. Sciences 29A, 39 (1995).

    Google Scholar 

  6. M. Charlton, Nucl. Instrum. Methods in Phys. Research B 143, 11 (1998).

    Article  ADS  Google Scholar 

  7. C. M. Surko, M. Leventhal, and A. Passner, Phys. Rev. Lett. 62, 901 (1989).

    Article  ADS  Google Scholar 

  8. C. M. Surko, A. Passner, M. Leventhal, and F. J. Wysocki, Phys. Rev. Lett. 61, 1831 (1988).

    Article  ADS  Google Scholar 

  9. T. J. Murphy and C. M. Surko, Phys. Rev. Lett. 67, 2954 (1991).

    Article  ADS  Google Scholar 

  10. K. Iwata et al., Phys. Rev. A 51, 473 (1995).

    Article  ADS  Google Scholar 

  11. K. Iwata, R. G. Greaves, and C. M. Surko, Phys. Rev. A 55, 3586 (1997).

    Article  ADS  Google Scholar 

  12. K. Iwata et al., Phys. Rev. A 61, 022719 (2001).

    Article  ADS  Google Scholar 

  13. S. J. Gilbert, C. Kurz, R. G. Greaves, and C. M. Surko, Appl. Phys. Lett. 70, 1944 (1997).

    Article  ADS  Google Scholar 

  14. S. J. Gilbert, R. G. Greaves, and C. M. Surko, Phys. Rev. Lett. 82, 5032 (1999).

    Article  ADS  Google Scholar 

  15. J. S. Sullivan, S. J. Gilbert, and C. M. Surko, Phys. Rev. Lett. 86, (2001).

    Google Scholar 

  16. R. G. Greaves and C. M. Surko, Phys. Rev. Lett. 85, 1883 (2000).

    Article  ADS  Google Scholar 

  17. X. Huang et al., Phys. Rev. Lett. 78, 875 (1997).

    Article  ADS  Google Scholar 

  18. F. Anderegg, E. M. Holmann, and C. F. Driscoll, Phys. Rev. Lett. 81, 4875 (1998).

    Article  ADS  Google Scholar 

  19. T. J. Murphy and C. M. Surko, Phys. Rev. A 46, 5696 (1992).

    Article  ADS  Google Scholar 

  20. R. G. Greaves and C. M. Surko, in AIP Conf. Proc. no. 498, Non-Neutral Plasma Physics III, edited by J. J. Bellinger, R. L. Spencer, and R. C. Davidson (AIP, Melville, New York, 1999), pp. 19–28.

    Google Scholar 

  21. L. Haarsma, K. Abdullah, and G. Gabrielse, Phys. Rev. Lett. 75, 806 (1995).

    Article  ADS  Google Scholar 

  22. D. J. Wineland, C. S. Weimer, and J. J. Bollinger, Hyperfine Interact. 76, 115 (1993).

    Article  ADS  Google Scholar 

  23. A. S. Newbury, B. M. Jelenkovic, J. J. Bellinger, and D. J. Wineland, Phys. Rev. A 62, 023405 (2000).

    Article  ADS  Google Scholar 

  24. C. M. Surko, S. J. Gilbert, and R. G. Greaves, in AIP Conf. Proc. no. 498, Non-Neutral Plasma Physics III, edited by J. J. Bollinger, R. L. Spencer, and R. C. Davidson (AIP, Melville, New York, 1999), pp. 3–12.

    Google Scholar 

  25. M. Charlton et al., Phys. Rep. 241, 65 (1994).

    Article  ADS  Google Scholar 

  26. P. M. Platzman and A. P. Mills, Jr., Phys. Rev. B 49, 454 (1994).

    Article  ADS  Google Scholar 

  27. F. Ebel, W. Faust, H. Schneider, and I. Tobehn, Nucl. Instrum. Methods in Phys. Research A 274, 1 (1989).

    Article  ADS  Google Scholar 

  28. D. Segers, J. Paridaens, M. Dorikens, and L. Dorikens-Vanpraet, Nucl. Instrum. Methods in Phys. Research A 337, 246 (1994).

    Article  ADS  Google Scholar 

  29. A. P. Mills Jr., Appl. Phys. 22, 273 (1980).

    Article  ADS  Google Scholar 

  30. L. D. Hulett, Jr., D. L. Donohue, and T. A. Lewis, Rev. Scient. Instrum. 62, 2131 (1991).

    Article  ADS  Google Scholar 

  31. V. W. Hughes et al., Phys. Rev. A 5, 195 (1972).

    Article  ADS  Google Scholar 

  32. A. P. Mills Jr., Appl. Phys. 23, 189 (1980).

    Article  ADS  Google Scholar 

  33. X. Huang, J. J. Bollinger, T. B. Mitchell, and W. M. Itano, Phys. Rev. Lett. 80, 73 (1998).

    Article  ADS  Google Scholar 

  34. E. Hollmann, F. Anderegg, and C. F. Driscoll, Phys. Plasmas 7, 2776 (2000).

    Article  ADS  Google Scholar 

  35. I. Al-Qaradawi, M. Charlton, I. Borozan, and R. Whitehead, J. Phys. B 33, 2725 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Greaves, R.G., Surko, C.M. (2001). Trap-based Positron Beams. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics